

Subject Name: Physics, Subject Code: PY-101 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	To analyze the connection between daily life observations and science.
	To realize that apparently different ideas of Optics such as Interference and Diffraction have
	interrelationship between them.
	To realize the simplicity of ideas involved in explaining complex phenomenon.
CO 2	To grow in ideas of different aspect of light and develop connection between daily life
	applications and science To analyze the process of development of a new theory while dealing
	with Polarization.
	To correlate that the conceptualization of an idea is far ahead than its practical realization while
	dealing with LASER. To grow in realization of totally different manifestation of light.
	To find the most recent applications of light in terms of communication and storage of data. To
	realize that how the design of complex systems is based on the simple ideas.
CO 3	To grow in developing connection between philosophy and science.
	To find that seemingly different ideas such as Optics and Mechanics have interrelationship
	between them. To understand the process of development of a new theory and its application in
	life.
	To realize the requirement of power of imagination.
CO 4	To grow in developing the connection between philosophy and science
	To find that seemingly different ideas such as Compton Effect and Quantum Theory have
	interrelationship between them.
	To understand and analyze the process of development of a new theory and how the
	development of one idea leads to the development of a apparently different idea.
CO 5	To grow in developing connection between daily life utility and material science.
	To realize that apparently different materials with respect to Electric and Magnetic properties
	have inter relationship between them.
	To evaluate that how totally different manifestation of Modern Science leads to new
	technology.

COURSE OBJECTIVES: The purpose of this undergraduate course is to impart basic knowledge of fundamental concept of physics which is necessary for a strong engineering knowledge base.

UNIT I	Electrostatics-	8				
	Boundary conditions and Boundary value problems in electrostatics, The					
	Uniqueness theorem, Laplace and Poisson's equations in electrostatics and their					
	applications, method of electrical images and their simple applications, energy					
	stored in discrete and continuous system of charges.					
UNIT II	Wave Optics-	8				

	Methods of formation of coherent sources, Theory of Interference, Fresnel's	
	Biprism, Displacement of Fringes, thinfilm interference, Newton's ring.	
	Fraunhoffer diffraction at single slit and grating, Rayleigh's criterion of	
	resolution,resolving power of grating.	
UNIT III	Optical activity and Modern Optics-	8
	Production of plane polarized light by reflection and Double refraction, Nicol	
	prism. Optical activity, Fresnel'stheory, polarimeter (Laurentz and Biquartz).	
	Principle of fiber optics, numerical aperture, attenuation, dispersion in optical	
	fibers, material dispersion, waveguidedispersion, intermodal and intramodal	
	dispersion, Pulse dispersion in step index fiber, Main components of	
	laser, Einstein's coefficients, He-Ne laser, Nd-YAG laser and their applications.	
TINITED TY	D / CAF // ID I / L / AF I L	_
UNIT IV	Properties of Matter and Relativistic Mechanics-	8
UNITIV	Viscosity, Poiseuille's equation, Frame of reference, Michelson-Morley	8
UNITIV	*	8
UNITIV	Viscosity, Poiseuille's equation, Frame of reference, Michelson-Morley	8
UNITIV	Viscosity, Poiseuille's equation, Frame of reference, Michelson-Morley experiment and its implications, Galileantransformation equations, Einstein's	8
UNIT IV	Viscosity, Poiseuille's equation, Frame of reference, Michelson-Morley experiment and its implications, Galileantransformation equations, Einstein's postulates, Lorentz transformation equations and their consequences, energy mass	8
	Viscosity, Poiseuille's equation, Frame of reference, Michelson-Morley experiment and its implications, Galileantransformation equations, Einstein's postulates, Lorentz transformation equations and their consequences, energy mass relation, relativistic kinetic energy.	ū
	Viscosity, Poiseuille's equation, Frame of reference, Michelson-Morley experiment and its implications, Galileantransformation equations, Einstein's postulates, Lorentz transformation equations and their consequences, energy mass relation, relativistic kinetic energy. Quantum Physics-	ū
	Viscosity, Poiseuille's equation, Frame of reference, Michelson-Morley experiment and its implications, Galileantransformation equations, Einstein's postulates, Lorentz transformation equations and their consequences, energy mass relation, relativistic kinetic energy. Quantum Physics- Compton effect, Basic postulates of quantum mechanics, Wave function and its	ū
	Viscosity, Poiseuille's equation, Frame of reference, Michelson-Morley experiment and its implications, Galileantransformation equations, Einstein's postulates, Lorentz transformation equations and their consequences, energy mass relation, relativistic kinetic energy. Quantum Physics- Compton effect, Basic postulates of quantum mechanics, Wave function and its physical admissibility, orthogonalityand normalization of wave functions,	ū

- 1. Fundamentals of Optics by Jenkins and White.
- 2. Optical Fiber Communication by Gerd Keiser.
- 3. Concepts of Modern Physics by Arthur Beiser.
- 4. Introduction to Special Theory of Relativity by Robert Resnick.
- 5. Quantum Physics by Eisberg.
- 6. Introduction to Nanotechnology by Poole Owens, Wiley India.
- 7. Solid State Physics by S.O. Pillai, New Age Publications.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
СО															
CO1	3	3	2	1	3	1	3	3	3	2	1	3			
CO2	2	2	2	2	2	3	2	2	2	2	2	2	1		3
CO3	3	3	1	3	3	1	3	3	3	1	3	3		2	
CO4	2	2	2	3	1	2	2	2	2	2	3	1	3		
CO5	2	1	1	1	2	2	2	2	1	1	1	2			1
1. Lov	1. Low Association 2: Average Association						3: Strong Association								

Subject Name: Professional Communication-I, Subject Code: LN-101 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	С
None	None	2	1	0	3

CO 1	Basic Understanding of communication and Professional Communication
CO 2	Basic knowledge of structural and functional grammar. Learning Language through literature
CO 3	Basic tools of communication and improvement in communicative competence
CO 4	Understanding the basic grammar and basic structure of language
CO 5	Enhancement of writing skills in English i.e. writing application, report and various types of
	letters

COURSE OBJECTIVES:

- Developing the art of communication and learning language though literature
- Knowledge of Professional, cultural and cross-cultural communication
- Basic concept of structural and functional grammar; meaning and process of communication, verbal and nonverbal communication
- Knowledge of reading and comprehension of general and technical articles, precise writing, summarizing, abstracting
- Basic concepts of group discussion, organizing seminars and conferences
- Development of Reading and Writing skills

UNIT I	Introduction to Communication	4
	Definition, Types of Communication, Channels of Communication, Language.	
UNIT II	Interpersonal Communication	6
	Culture- Definition and Types, Communication and Culture including Cross	
	Cultural Communication.	
UNIT III	Written Communication	8
	Letter Writing- Informal and Formal - Letters of Enquiry, Letters of complaint,	
	Response to complaints and enquiries, Self Exploration through description.	
UNIT IV	Grammar through Worksheets	12
	Situational activities and modules- Parts of Speech, Tenses, Articles,	
	Modals, Active and Passive, Subject-Verb Agreement, Direct and Indirect Speech,	
	Degrees of comparison.	
UNIT V	Grammar through Worksheets Continued	10
	Sentences: Simple, Compound, Complex, Declarative, Assertive, Negative,	
	Interrogative, Exclamatory, Imperative.	

- 1. Wren PC and Martin H, "High School Grammar and Composition", S. Chand and Co.
- 2. K. Floyd, "Interpersonal Communication: The Whole Story" (2009), McGraw Hill.
- 3. Greenbaum Sidney and Nelson Gerald, "An Introduction to English Grammar", Pearson.
- 4. Swan Michael, "Practical English Usage" OUP, 2005.
- 5. Raymond Murphy, "Intermediate English Grammar", (2007) Cambridge University Press.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
СО															
CO1	3	2	2	1	3	3		1				3	3	2	2
CO2	3	2	3	2	1	1						2	1	2	1
CO3	3	2	1	1	1	2	3					2	1	3	2
CO4	3	2	3	2		3						1	2	2	2
CO5	3	2	2	1	1	2	1					2	3	3	2
1. Lov	1. Low Association 2: Average Association						3	3: Stro	ong Ass	ociatio	n				

Subject Name: Engineering Mathematics-I, Subject Code: MT-101 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Able to calculate rank of matrix, characteristic equation & characteristic roots & use the applicability of Cay lay Hamilton Theorem to find inverse of matrix which is very important in many engineering application.
CO 2	To develop ability to solve higher derivative, expansion of functions in ascending power of variable & partial derivatives.
CO 3	Develops ability to solve Jacobian, error and approximation and Extrema of the function.
CO 4	Learn the evaluation policy of some special function like gamma & Beta function. & their relation which is helpful to evaluate some definite integral arising in various branch of Engineering.
CO 5	Able to determine vector differentiation and integration.

COURSE OBJECTIVES: The course is aimed to develop the skills in mathematics which is necessary for grooming them into successful engineering graduate. The topics introduced will serve as basic tools for specialized studies in science field.

UNIT I	Differential Equations	8					
	Linear differential equations of first order, Linear differential equations of higher						
	order with constant coefficients, Complementary functions and particular integrals,						
	Simultaneous linear differential equations, Solution ofsecond order differential						
	equations by changing dependent and independent variables, Method of variation						
	ofparameters, Applications to engineering problems (without derivation).						
UNIT II	Laplace Transform	8					
	Laplace transform, Existence theorem, Laplace transform of derivatives and						
	integrals, Unit stepfunction, Dirac-delta function, Laplace transform of periodic						
	functions, Inverse Laplace transform, Convolutiontheorem, Applications to solve						
	simple linear and simultaneous differential equations.						
UNIT III	Fourier Series and Partial Differential Equations	9					
	Periodic functions, trigonometric series, Fourier series of period 2 π , Euler's						
	formulae, functions havingarbitrary period, change of interval, Even and odd						
	functions, Half range sine and cosine series.						
	Introduction of partial differential equations, linear partial differential equations						
	with constant coefficients of second order and their classifications to parabolic,						

	elliptic and hyperbolic forms with illustrative examples.	
UNIT IV	Applications of Partial Differential Equations	8
	Method of separation of variables for solving partial differential equations, Wave	
	equation up to two-dimensions, Laplace equation in two-dimensions, Heat	
	conduction equations up to two dimensions, Equations of transmissionLines.	
UNIT V	Basic Statistics and curve fitting	7
	Mean, Median, Mode, Standard deviation and Variance, Method of least squares,	
	Curvefitting of straight line and parabola.	

- 1. E. Kreyszig Advanced Engineering Mathematics, Wiley Eastern Ltd.
- 2. Jaggi and Mathur Advanced Engineering Mathematics, Khanna Publication.
- 3. B. S. Grewal Higher Engineering Mathematics, Khanna Publication.
- 4. Dennis G. Zill Advanced Engineering Mathematics, CBS Publication.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
СО	1														
CO1	3	2	2	1	3	3	3					1			
CO2	3	2	2	1	2	2	2		1	3			1	2	
CO3	3	2	3	1	3	2	3				1				3
CO4	3	2	3	1	3	3	2	2		1			2		
CO5	3	2	1	1	3	2	1						3		
1. Lo	1. Low Association 2: Average Association							3	3: Stro	ong Ass	ociatio	n			

Subject Name: Basic Electrical Engineering, Subject Code: EE103/EEE103 w.e.f Session 2017-18

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Know about the concept of D.C Circuit Analysis and Network Theorems Circuit.
CO 2	Steady State Analysis of Single Phase AC Circuits AC fundamentals.
CO 3	Know about concept of Three Phase AC Circuits Three phase system and measuring devices.
CO 4	Layout of Power System and transformer
CO 5	Know about Electromechanical energy conversion devices: AC/ DC Machines

COURSE OBJECTIVES:

- Knowledge and concept of D.C Circuit Analysis and Network Theorems Circuit.
- Use of Steady State Analysis of Single Phase AC Circuits AC fundamentals.
- Knowledge and concept of Three Phase AC Circuits Three phase system and measuring devices.
- Basic concepts of Power System and Transformer
- Study of Electromechanical energy conversion devices: AC/ DC Machines.

UNIT I	D.C CIRCUIT ANALYSIS AND NETWORK THEOREMS	
	Circuit concepts: Concept of network, Active and passive elements, linear network,	
	unilateral and bilateral elements, source transformation, Kirchhoff's Law: loop and nodal	
	methods of analysis, star delta transformation.	8
	Network theorems: Superposition theorem, Thevenin's theorem, Norton's theorem,	
	maximum power transfer theorem.	
UNIT II	STEADY STATE ANALYSIS OF SINGLE-PHASE AC CIRCUITS	
	AC fundamentals: Average and effective value of Sinusoidal waveform, form factor and	
	peak factor, concept of phasor, phasor representation of sinusoidally varying voltage and	
	current, analysis of series RLC circuits. Apparent, active and reactive powers, power factor,	8
	causes and problems of low power factor, power factor improvement, resonance, bandwidth	
	and quality factor in series circuit.	
UNIT III	THREE PHASE AC CIRCUITS&MEASURING INSTRUMENTS	

	Three phase system: Its necessity and advantages, meaning of phase sequence, star and delta connections, balanced supply, line and phase voltage/current relationship. Measuring Instruments: Types of instruments: construction and working principle of PMMC, MI type instruments, induction type energy meter.	8
UNIT IV	INTRODUCTION OF POWER SYSTEM, MAGNETIC CIRCUIT AND SINGLE PHASE TRANSFORMER Introduction of Power System: General layout of electrical power system, standard generation, transmission and distribution voltage levels, concept of grid. Magnetic circuit: Concepts, analogy between electric and magnetic circuit. Single Phase Transformer: Principle of operation, construction, emf equation, equivalent circuit, losses, efficiency, Introduction to auto transformer.	8
UNIT V	PRINCIPLE OF ELECTROMECHANICAL ENERGY CONVERSION DC Machines: Types, emf equation of generator and torque equation of motor, applications. Three Phase Induction Motor: Types, principle of operation, applications. Single Phase Induction Motor: Principle of operation and introduction to methods of starting, applications. Three Phase Synchronous Machines: Principle of operation of alternator, synchronous motor, applications.	8

- 1. V.Deltoro, "Principle of Electrical Engg." PHI, 2009.
- 2. M.A Mallick, Dr. I. Ashraf, "Fundamental of Electrical Engg," CBS Publishers, 2010.
- 3. A. Hussain, "Basic Electrical Engg" Dhanpat Rai & sons, 2007.
- 4. I J Nagrath, "Basic Electrical Engg", TMH, 2010.

CO-PO MAPPING

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
PSO																	
СО																	
CO1	3	3	2	1	1	3						3	3	3	2		
CO2	3	3	3	2	1	1						2	3	2	1		
CO3	3	2	1	1	2	2	3					3	3	3	2		
CO4	3	2	2	2	3	3						2	3	2	2		
CO5	3	1	1	1	1	2	1					2	3	3	2		
1. Lov	1. Low Association 2: Average Association								3: Strong Association								

Subject Name: Basic Electronics, Subject Code: EC-101 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Understand the current voltage characteristics of semiconductor devices. Identify the unique vocabulary associated with electronics and explain the basic concepts of Semiconductor diodes such as pn junction diode, characteristics and ammeters, DC loadline, Zener diode. To apply the basics of diode to describe the working of rectifier circuits such as Full and half wave rectifiers.
CO 2	Analyze dc circuits and relate ac models of semiconductor devices with their physical Operation Draw and explain the structure of bipolar junction transistor. Explain the operation of each device in terms of junction bias voltage and charge carrier movement. Identify and explain the various current components in a transistor.
CO 3	Design and analyze of electronic circuits Describe the application of transistors for Current and voltage amplification. Also to describe the characteristics of different configurations of the transistor. Describe DC load line and bias point. List, explain, and design and analyze the different biasing circuits.
CO 4	Evaluate frequency response to understand behavior of Electronics circuits. Sketch, explain and design the amplifier circuit for given specification and analyze them discuss oscillator principles, oscillator types, and frequency stability as it relates to its operation. Analyze and Design the different types of Oscillators. Discuss ideal and practical operational amplifier (op amp) their electrical parameters, need for op amp. Explain and design different application circuits using op amp
CO 5	List and explain the different number system. Solve examples on converting one form of number system to another form. State Boolean laws and theorems. State and explain the different logic gates using truth table. Analyze and design different adder circuits.

COURSE OBJECTIVES:

UNIT I	Semiconductor Diode	8						
,	Mechanism of Conduction in Semiconductors: Mobility and Conductivity,							
	Electrons and holes in anintrinsic semiconductors, Donor and acceptor impurities,							
	Fermi level, Carrier densities insemiconductor, Hall effect, Diffusion,							
	Recombination.							
	Junction DiodePN junction characteristic and its equation, Effect of Temperature,							
	Depletion Layer, Piecewise lineardiode model, Breakdown Mechanism, Zener and							
	Avalanche Breakdown characteristics.							
	Diode as circuit elementHalf wave and full wave rectifiers, capacitive filters, Zener							
	diode as a regulator, clamper, clipper andvoltage double, special diode- LED,							
	Schott key diodes.							
UNIT II	BJT characteristics and circuits	8						
•	Transistor Operation, CE, CB, CC configuration and their characteristics, transistor							
	biasing circuits, stability factor, h- parameter model (low frequency), computation							
	of Ai, Av, Ri, Ro of single transistorCE amplifier configuration.							
UNIT III	Field Effect Transistors	8						
	JFET: Construction and principle of working, Drain / Transfer characteristics, basic							
	amplifier circuits, Biasing of JFETMOSFET: Enhancement and depletion type N-							
	channel, P-channel, Drain / TransferCharacteristics.							
UNIT IV	Switching theory & Logic gates	8						
	Number system, Conversion, Compliments, Addition and Subtraction, BCD							
	numbers,Boolean algebra, Canonical form, Logic gates, Minimization of logical							
	function usingKarnaugh map.							
UNIT V	Operational Amplifier	8						
	Concept of ideal operational amplifier (inverting and non-inverting) and its							
	applications, Inverter, integrator, differentiator, voltage follower, summing and							
	differential amplifierElectronic Instruments: Digital Multimeter (block diagram							
	approach), CRO (block diagram and itsworking), Measurement of voltage, phase,							
	frequency. Double beam CRO (block diagram & it'sworking).							

- 1. Bolyested&Nashekey / Electronic Devices and Circuit Theory, PHI
- 2. Milliman & Halkias: Integrated Electronics, Mc Graw Hill
- 3. J. S. Katre: Electronics Engineering, Tech-Max Publication

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
СО															
CO1	3	2	2	1	3	3	3					1			
CO2	3	2	2	1	2	2	2		1	3			1	2	

CO3	3	2	3	1	1	2	3				1				3		
CO4	3	2	3	1	2	3	2	2		1			2	2	1		
CO5	3	2	1	1		2	1						3	1			
1. Lov	1. Low Association 2: Average Association									3: Strong Association							

PHYSICS LAB (PY104)

L T P 0 0 2

	of wavefront.
CO 2	To demonstrate the practical applications of polarization phenomenon in finding the specific rotation, refractive index and Brewster's angle.
CO 3	To demonstrate the practical application of Fraunhoffer diffraction in wavelength and focal length calculation.
CO 4	To demonstrate the magnetic and heating effect of current in finding the magnetic field and Stefan's constant.
CO 5	To demonstrate how to calculate the energy band gap of a semiconductor material and viscosity of a liquid

COURSE OBJECTIVES:

the purpose of this undergraduate course is to impart practical knowledge of the concepts through different experiments related to its theoretical course.

List of Experiments:

- 1. To determine the wave length of monochromatic light by Newton's ring.
- 2. To determine the wave length of monochromatic light with the help ofFresnel's Biprism.
- 3. To determine the focal length of two lenses by nodal slide and locate the position of cardinal points.
- 4. To determine the specific rotation of cane sugar solution using Biquartzpolarimeter.
- 5. To determine the wavelength of spectral lines using plane transmission grating.
- 6. To determine the Brewster's angle and refractive index of material with thehelp of a laser source.
- 7. To determine the variation of magnetic field along the axis of a current carrying coil and then to estimate the radius of the coil.
- 8. To verify Stefan's law by electrical method.
- 9. To determine the energy band gap of a given semiconductor material.
- 10. To determine the viscosity of a liquid.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
СО															
CO1	3	2	2	1	3	3		1				3	3	3	2
CO2	3	2	3	2	1	1						2	1	2	1
CO3	3	2	1	1	2	2	3		2			3	3	3	2
CO4	3	2	3	2		3						2	2	2	2

1. Low	A SSO	ciation	1 2	Aver	age A	ssocia	tion	-	3 · Stro	nσ Ass	ociatio	n			
CO5	3	1	2	1	1	2	1					2	3	3	2

Integral University, Lucknow Department of Electrical Engineering B.TECH. ELECTRICAL ENGINEERING

Subject Name: Electrical Engineering Lab, Subject Code: EE104/EEE104 w.e.f Session 2017-18

Pre-requisite	Co-requisite	L	T	P	C
None	None	0	0	2	1

CO 1	Know about the concept of D.C Circuit Analysis and Network Theorems Circuit.
CO 2	Steady State Analysis of Single Phase AC Circuits AC fundamentals.
CO 3	Know about concept of Three Phase AC Circuits Three phase system and measuring devices.
CO 4	Layout of Power System and transformer
CO 5	Know about Electromechanical energy conversion devices: AC/ DC Machines

COURSE OBJECTIVES:

- Knowledge and concept of D.C Circuit Analysis and Network Theorems Circuit.
- Use of Steady State Analysis of Single Phase AC Circuits AC fundamentals.
- Knowledge and concept of Three Phase AC Circuits Three phase system and measuring devices.
- Basic concepts of Power System and Transformer
- Study of Electromechanical energy conversion devices: AC/ DC Machines.

List of Experiments:

- 1. Verification of Thevenin's Theorem.
- 2. Verification of Superposition Theorem.
- 3. Verification of Maximum Power Transfer Theorem.
- 4. To study V-I characteristics of diode.
- 5. To study the input & output characteristics of BJT in CE configuration.
- **6.** To study the full wave rectifier circuit with &without filter and determine the ripple factor.
- 7. To study the phenomenon of resonance in series RLC circuit.
- **8.** Determination of losses in single phase transformer by OCT and SCT.
- **9.** To calibrate a single-phase induction type energy meter.
- 10. To study the running and reversing of a three phase SCIM.
- 11. Study of OP Amp based inverting and non-inverting amplifier.

CO-PO MAPPING:

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
_	_			_											

PSO															
СО															
CO1	3	2	2	1	3	3		1				3	3	3	2
CO2	3	2	3	2	1	1						2	1	2	1
CO3	3	2	1	1	2	2	3		2			3	3	3	2
CO4	3	2	3	2		3						2	2	2	2
CO5	3	1	2	1	1	2	1					2	3	3	2
1. Lov	1. Low Association 2: Average Association						tion	3	3: Stro	ong Ass	ociatio	n			

ENGINEERING GRAPHICS (ME103)

LTP

002

1. Introduction

Engineering graphics as a tool to communicate ideas, Lettering and dimensioning.

Construction of geometrical figures like pentagon and hexagon.

2. Orthographic Projection

Principles of orthographic projections Principal and auxiliary planes, First and

Third angle projections.

Projection of points. Pictorial view.

Projection of lines parallel to both the planes. Parallel to one and inclined too other, Inclined to both the planes. Application to practical problems.

Projection of solid in simple position, Axis or slant edge inclined to one andparallel to other plane, solids lying on a face or generator on a plane.

Sectioning of solids lying in various positions, True shape of the section.

Development of lateral surfaces, sheet metal drawing.

3. Isometric Projection

Principles of isometric projection, Isometric projection using box and offset methods.

WORKSHOP PRACTICE (ME104)

LTP

012

1. Machine Shop

- a. Study of tools and operations
- b. Plane turning
- c. Step turning
- d. Taper turning
- e. Threading
- f. Single point cutting tool grinding.

2. Fitting Bench Working Shop

- a. Study of tools and operations
- b. Simple exercises involving filing work.
- c. Making perfect male-female joint.
- d. Simple exercises involving drilling/tapping/dieing.

3. Black Smithy Shop

a. Study of tools and operations

b. Simple exercises based on black smithy operations such asupsetting drawing down, punching, bending, fullering and swaging

4. Welding Shop

- a. Study of tools and Operations
- b. Simple butt joint
- c. Lap Joint
- d. Oxy acetylene welding

5. Sheet Metal Shop

- a. Study of tools and Operations
- b. Making funnel complete with soldering.
- c. Fabrication of tool box, tray, electrical panel box etc.

6. Carpentry Shop

- a. Study of tools and Operations and carpentry joints.
- b. Simple exercise using jack plain.
- c. To prepare half lap corner joint, mortise and tennon joints.
- d. Simple exercise on woodworking lathe.

7. Foundry

- a. Making a mould using single piece pattern.
- b. Making a mould using two-piece pattern
- c. Making a mould using a pattern with core print
- d. Melting Pouring and Making an Aluminum Casting.

Subject Name: Chemistry, Subject Code: CH101 w.e.f Session 2019-20

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Analyze and compare magnetic behavior and stability of heteronuclear diatomic molecules, Significance of hydrogen bonding ,band theory, radius ratio, density of unit cell, fullerenes and graphite
CO 2	
	Comprehension of types of polymers to make an appropriate choice of use of polymers (Natural, synthetic and biodegradable).
CO 3	
	Compare reaction intermediates and mechanism of chemical reactions and isomerism.
CO 4	
	Interpret phase rule, phase diagram, corrosion and its prevention, calculation of activation energy, rate constant, half-life period, emf of electrochemical cells, construction and operation of galvanic cell and concentration cells,
CO 5	
	Determination of calorific value, analyzing water softening methods, principles, instrumentations of UV, IR and NMR spectroscopy and their applications.

COURSE OBJECTIVES: The course is aimed to develop the skills in Chemistry which is necessary for grooming them into successful engineering graduate. The topics introduced will serve as basic tools for specialized studies in science field.

UNIT I	Chemical bonding and state of matter: Molecular theory of hetero diatomic molecules, Band theory of bonding in metals, Hydrogen bonding. Solid state chemistry: Radius ratio rule, Space lattice (only cubes), Types of Unit cells, Bragg's law, calculation of density of unit cell. One and Two Dimensional solids, Graphite as two dimensional solid and its conducting and lubricating properties. Fullerene and its applications	8
UNIT II	Polymers: Polymerization and its classification, Thermoplastic and thermosetting resins. Elastomers (Buna-S, Buna-N, thiokols, polyurethanes, silicons), Polyamides (Nylon-6, Nylon-6,6, Nylon-6,10, Nylon-11, Kevlar), Polyesters (Terelene), Polyacrylates (PMMA, PAN, PVC). Organic conducting and biodegradable polymers.	8
UNIT III	Structural and mechanistic concepts in organics: Stability of reaction intermediates, e.g. Carbanions, Carbocations and free radicals. Types of organic reactions, mechanism of nucleophilic substitutionreactions. Mechanism of the following name reactions. i. Aldolcondensation ii. Cannizzaro reaction	8

	iii. Beckmannrearrangement	
	iv. Hofmann rearrangement and	
	v. Diels-Alderreaction	
	E-Z Nomenclature. R.S configuration, Optical isomerism of organic compounds containing one chiral center. Examples of optically active compounds without chirality. Conformations of n-butane.	
UNIT IV	Reaction kinetics, Phase rule, Electrochemistry and Corrosion: Order and molecularity of reactions. First and second order reactions. Energy ofactivation. Phase Rule, its application to one component system(water). Equilibrium potential, electrochemical cells (galvanic and concentrationcells) Electrochemical theory of corrosion and protection ofcorrosion.	8
UNIT V	Analytical methods, Fuel and Water treatment: Basic principles of spectroscopic methods. The use of UV, Visible, IR, 1HNMR, for the determination of structure of simple organic compounds. Classification of fuels, determination of gross and net calorific values using Bomb Calorimeter. Hardness of water, softening of water by Lime-Soda process, Zeolites and ion exchange resins process and Reverse Osmosis. Treatment of boiler feed water by Calgon process	8

- Jain P. C. and Jain M. 1994. Engineering Chemistry. Danpat Rai publishing company Pvt. Ltd., Delhi.
- Bahl B.S, Arun Bahl and Tuli B.D. 2007. Essentials of Physical Chemistry. S. Chand and Co. Ltd., Delhi.
- Industrial Chemistry B.K.Sharma, Goel publishing house.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
PSO																
СО																
CO1	3	2	2	1						1		2	3	2	2	
CO2	3		2	1		2	1	2		1		3	3		2	
CO3	3	2	2	2		2				1		2	3	2		
CO4	3	3	2	2	1	2	2			1		3	3	3	2	
CO5	3	3	2	2	2	2	2	2		1		2	3	3	2	
	1. Low Association					2: Average Association					3: Strong Association					

Subject Name: Engineering Mathematics-II, Subject Code: MT-112 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Solve first order linear equations and higher order differential equation of certain types and interpret the solutions.
CO 2	To use shift theorems to compute the Laplace transform, inverse Laplace transform and the solutions of second order, linear equations with constant coefficients.
CO 3	Able to determine given function in terms of sine and cosine terms in Fourier series.
CO 4	Apply problem-solving using concepts and techniques from PDE's and Fourier analysis applied to diverse situations in physics, engineering, financial mathematics and in other mathematical contexts.
CO 5	Apply method of least squares to find the curve of best fit for the given data

COURSE OBJECTIVES: The course is aimed to develop the skills in mathematics which is necessary for grooming them into successful engineering graduate. The topics introduced will serve as basic tools for specialized studies in science field

UNIT I	Differential Equations	8
	Linear differential equations of first order, Linear differential equations of higher	
	order with constant coefficients, Complementary functions and particular integrals,	
	Simultaneous linear differential equations, Solution ofsecond order differential	
	equations by changing dependent and independent variables, Method of variation	
	ofparameters, Applications to engineering problems (without derivation).	
UNIT II	Laplace Transform	8
	Laplace transform, Existence theorem, Laplace transform of derivatives and	
	integrals, Unit stepfunction, Dirac-delta function, Laplace transform of periodic	
	functions, Inverse Laplace transform, Convolutiontheorem, Applications to solve	
	simple linear and simultaneous differential equations.	
UNIT III	Fourier Series and Partial Differential Equations	9
	Periodic functions, trigonometric series, Fourier series of period 2 π , Euler's	
	formulae, functions havingarbitrary period, change of interval, Even and odd	
	functions, Half range sine and cosine series.	
	Introduction of partial differential equations, linear partial differential equations	
	with constant coefficients of second order and their classifications to parabolic,	
	elliptic and hyperbolic forms with illustrative examples.	
UNIT IV	Applications of Partial Differential Equations	8

	Method of separation of variables for solving partial differential equations, Wave equation up to two-dimensions, Laplace equation in two-dimensions, Heat conduction equations up to two dimensions, Equations of transmissionLines.					
UNIT V	Curve fitting and Solution of Equations	7				
	Method of least squares, curve fitting of straight line and parabola, Solution of					
	cubic and biquadratic equations.					

- 1. E. Kreyszig Advanced Engineering Mathematics, Wiley Eastern Ltd.
- 2. Jaggi and Mathur Advanced Engineering Mathematics, Khanna Pub.
- 3. B. S. Grewal Higher Engineering Mathematics, Khanna Pub.
- 4. Dennis G. Zill Advanced Engineering Mathematics, CBS Pub.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
СО]														
CO1	3	2	2	1	3	3	3					1			
CO2	3	2	2	1	2	2	2			3			1	2	
CO3	3	2	3	1	3	2	3								3
CO4	3	2	3	1	3	3	2			1			2		
CO5	3	2	1	1	3	2	1								
1. Lov	1. Low Association 2: Average Association					3: Stro	ong Ass	ociatio	n	•	•				

Subject Name: Basic Mechanical Engineering, Subject Code: ME-101 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Explain basic concepts of thermal sciences and temperature measurement on the
	basis of zeroth law of thermodynamics.
CO 2	Understand and apply first and second law of thermodynamics to various
	processes and real systems.
CO 3	Model the problem using free-body diagrams and reach to solution by using
	equilibrium equations.
CO 4	Draw Shear Force Diagram (SFD) and Bending Moment Diagrams (BMD) for
	statistically determinate beams.
CO 5	Design simple components on the basis of knowledge of stress, strain and
	strength of material.

COURSE OBJECTIVES:

UNIT I	FUNDAMENTALS OF THERMODYNAMICS	8
	Fundamental Concepts and Definitions:	
	Definition of Thermodynamics, System, surrounding and universe, Phase, Concept	
	of continuum, Macroscopic & microscopic point of view. Density, Specific	
	volume, Pressure, temperature. Thermodynamic equilibrium, Property, State, Path,	
	process, Cyclic process, Energy and its form, Work and heat, Enthalpy.	
	Laws of thermodynamics:	
	Zeroth law: Concepts of Temperature, Zeroth law.	
UNIT II	FIRST LAW &SECOND LAW	8
	First law: First law of thermodynamics. Concept of processes, Flow processes and	
	control volume, Flow work, Steady flow energy equation, Mechanical work in a	
	steady flow of process.	
	Second law: Essence of second law, Thermal reservoir, Heat engines, COP of heat	
	pump and refrigerator. Statements of second law, Carnot cycle, Clausius inequality.	
UNIT III	MECHANICS AND STRENGTH OFMATERIALS	8
	Force system and Analysis:	
	Basic Concept: Laws of motion. Transfer of force to parallel position, Resultant of	
	planer force system.Free Body diagrams, equilibrium and its equation.	

	Friction: Introduction, Laws of Coulomb friction, Equilibrium of bodies involving dry friction, beltfriction.	
UNIT IV	STRUCTURE ANALYSIS Beams: Introduction, Shear force and bending moment, Shear and bending moment diagram for statically determinate beams.	8
UNIT V	STRESS AND STRAIN ANALYSIS Simple Stress and strain: Introduction, Normal, shear stresses, Stress-strain diagrams for ductile andbrittle materials. Pure Bending of Beams: Introduction, Simple bending theory.	8

- 1. Van Wylen G.J. & Sonnlog R.E. Fundamentals of Classical Thermodynamics, John Wiley & Sons, Inc. NY.
- 2. WarkWenneth: Thermodynamics (2nd edition) Mc Graw Hill Book Co. NY.
- 3. Holman, J.P.: Thermodynamics, Mc Graw Hill Book Co.NY.
- 4. Shames I.H., Engineering Mechanics, P.H.I.
- 5. D.S. Kumar, Mechanical Engineering, S.K. Katarial& Sons.
- 6. BhaviKatti S.S., Engineering Mechanics, New Age Pub.
- 7. P.K. Bharti: Engineering Mechanics, Kataria and Sons.
- 8. R.K. Rajput, Mechanical Engineering, Laxmi Pub.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	3	2	2	1		2						3	3	2	2
CO2	3	3	3	2		3						3	3	3	2
CO3	3	3	3	2		3						3	3	2	1
CO4	3	2	2	2		3						3	3	2	1
CO5	3	3	2	1		3						3	3	2	2
1. Low Association 2: Average Association			3: St	rong A	ssociat	ion		•	•	•	•				

Subject Name: Computer Programming, Subject Code: CS-101 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Understand basic concepts of computer, networks and formulation of algorithmic solutions to problems.
CO 2	Understanding of programming concepts of C language and their implementation.
CO 3	Analyze and develop programs on pointers and functions.
CO 4	Develop programs on different operations on arrays, matrices & strings.
CO 5	Implement programs on structure, union & Dynamic memory allocation.

Objective:

- To give knowledge of computers, networks, algorithms & flowcharts.
- To provide fundamental concepts of programming language 'C'.
- To show the use of functions and pointers to different problems.
- To study the implementation of arrays, matrices and strings.
- To give concepts of user defined data types structure & union.

UNIT I	Introduction to Computers:	9
	Generation of computers, Characteristic and classifications of computers.	
	Components of Computer: CPU, Various I/O Devices, Memory & its types,	
	(Memory Hierarchy, Storage Media), Computer Software and their types,	
	Operating System. Computer Networks & Communication: LAN, MAN, WAN,	
	Network Topologies, Modes of Data Communication. Introduction to Internet and	
	its Safeguard: Internet Addresses, Domain Name System, URL, Web Browsers	
	Search Engines, Firewalls, Anti-Virus, Translators. Algorithm and flowchart:	
	Algorithm and flow chart characteristics, Sketching Flowcharts of various	
	problems.	
UNIT II	Starting C:	8
	Standard I/O in 'C', 'C' Fundamental, C Character set, Constants, Variables,	
	Keywords and Identifiers, Data types, Declaration. Operators and Expressions,	
	Conditional statements (If, If-else), Nesting of if- else statement, switch statement,	
	The? operator, goto statement. Decision making and Looping (While, Do-While,	
	for), Break and Continue statements, Case Control Structures (Switch), C	
	programs based on above concepts.	
UNIT III	Introduction to pointers:	9

	Declaration and initialization of pointers, accessing the address of the variable, accessing the variable through the pointer, chain of pointers, pointers operators, pointer arithmetic Introduction to Functions: Need of "C" function, User Defined and Library Functions, Prototype of Function, Call by Value; Call by Reference; Nesting of Functions, Recursion. Pointers with function, C program based on above concept.	
UNIT IV	Array: Concept of One Dimensional and Multi-Dimensional arrays, Declaration, Operations: insert, delete, search, traverse, and merge, matrix operations, Sorting: Bubble sort, merge sort, insertion sort. Character array and strings: declaring and initializing strings variable, reading and writing a character, reading and writing strings from terminal, Arithmetic operations on characters, string handling functions. Application of pointers, and function on array, C program based on above concept.	10
UNIT V	Structures: Defining Structure, Declaration of Structure Variable, Accessing Structure members, copying and comparing structure variable, operation on individual member, nesting of structures, Array of structures. Application of pointers and function on Structures. Union Defining Union Declaration of Union, difference between structure and Union, Introduction of Static and Dynamic memory allocation- The process of Dynamic memory allocation, C program based on above concept.	8

- 1. Foundation of Information Technology by 'D.S. Yadav'- New age International 2. Programming in 'C' by 'E Balagurusamy'. -TMH Publication.

- Let us 'C' by 'YashwantKanitkar'-BPB Publication.
 The C Programming Essentials by Dey- Pearson Publication.

CO-PO/PSO MAPPING

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO]														
CO1	3	2				3		3	2			2	3	2	
CO2	3	3	1			1		2				2	1	3	
CO3	3	2				2	3	2				3			3
CO4	3	2		2		3	2	2				1			3
CO5			1			1							1		3
	•	1. Low Association 2: Average Association 3: Strong Association													

CHEMISTRY LAB (CH-102)

Course objectives:

CO 1	
	Analyze the need, design and perform given set of experiments with precision and accuracy.
CO 2	·
	Utilize the fundamental laboratory techniques for analyses such as titrations.
CO 3	Organize the records of all performed experiments in the manner which is required in laboratory.
CO 4	
	Comprehension of principle, instrumentation and use of UV-VIS spectrophotometer and pH meter.
CO 5	
	Able to analyze importance of personal safety, care of chemicals, equipments and gain experimental skill.

List of Experiments

- 1. To determine the Iron content in the given iron ore by using external indicator.
- 2. To determine the Alkalinity in the given water sample

- 3. To determine the Chloride content in the given water sample by Mohr's method. (Argentometric method)
- 4. To determine the Percentage of Available Chlorine in the given sample of Bleaching powder iodometrically.
- 5. To determine the temporary and permanent hardness in water sample by Complexometric titration using EDTA as standard solution.
- 6. To determine the Equivalent weight of Iron by Chemical Displacement method. (The Equivalent weight of copper is 63.5)
- 7. To determine the strength of given HCl solution by titrating it against NaOH solution using pH meter.
- 8. To determine the iron concentration in the given water sample by Spectrophotometer using potassium thiocyanate as color developing agent.
- 9. To detect the presence of functional groups in the given organic compound.
- 10.To detect the presence of Elements in the given organic compound.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO	7														
CO1	3	2	2	1					2			2			
CO2	3	3	3	3	1	2	1	2	2			2			
CO3	3	2	2	2		2			2	3		2			
CO4	3	1	2	2	1	2	2	1	2			2			
CO5	3	2	2	2	1	2	2	1	2			2			
1. Lov	1. Low Association 2: Average Association								3: Stro	ng Ass	ociatio	n			

MECHANICAL ENGINEERING LAB (ME-102)

LTP

002

List of Experiments

- 1. To study and sketch the model of fire tube (Lancashire and Locomotive) boiler.
- 2. To study and sketch the model of water tube (Babcock & Wilcox) boiler.
- 3. To study and sketch the model of two stroke S.I. Engines.
- 4. To study and sketch the model of four stroke S.I. Engines.

- 5. To study and sketch the model of four stroke C.I. Engines.
- 6. To study and sketch the model of vapour compression refrigerator.
- 7. To study and sketch the model of simple steam engine.
- 8. To determine the Rockwell hardness no. of a given specimen using hardnesstester.
- 9. To perform the tensile test on specimen and determine the different mechanical properties with the help of UTM.
- 10. To determine the impact strength of mild steel by Izod method using impacttesting machine.
- 11. To perform the compression test on brick and determine the ultimate compressivestrength with the help of UTM.

COURSE: COMPUTER PROGRAMMING LAB

COURSE CODE: CS102

COURSE CREDIT: 1

COURSE OBJECTIVES:

1 2 1 2 3

- To learn the basic concepts and syntax of C programming.
- To be able to develop logics which help them to create programs and applications using C language.
- To learn the use of C libraries functions in C language.
- To learn the file handling and basic memory allocation concepts in C language.
- After learning the C programming they can easily switch over to any other language.

List of Experiments (s)

```
1
            Write a Program to print any message
2
            Write a Program to print sum and Multiply of two numbers.
3
            Write a Program to enter the temperature in Celsius(c) then count it into Fahrenheit
4
            Write a Program to swap the number taking the help of third variable.
5
            Write a Program to calculate the volume of box.
6
            Write a Program to swap the number without taking the help of third variable.
7
            Write a Program to check a year is leap year not.
8
            Write a Program to print number is even or odd.
9
            Write a Program to Print month of name using switch case
10
            Write a Program to print the no is positive or negative.
11
            Write a Programto find the greater number enter by user.
12
            Write a Program to find the greater number Input 3 No.
13
            Write a Program to enter any no and check whether the given no is palindrome or not.
            Write a Program to enter any no. and check whether the given no. is Armstrong or not.
14
15
            Write a Program to Print Pattern
            * *
16
            Write a Program to Print Pattern
            1 2 3 4
            1 2 3
            1 2
17
            Write a Program to Print Pattern
```

1 2 3 4

- Write a program to find in C to design the report card of 5 subject according to the following condition if the total percentage are.
 - >=35 and <45 IIIrdDiv >=45 and <60 IIndDiv
 - >=60 IstDiv
- If any students score <35 in any of the subject display fail

 Write a Program to create 2-D array or order M*N and insert the element and display it.
- Write a Program to find the addition of two matrix of order M*N.
- Write a Program to find the Transpose of the matrix.
- Write a Program to swap two numbers Call by Value.
- Write a Program to swap two number using function pointers.
- WAP for structure of player Name, batting average and then name.

COURSE OUTCOMES (CO):

After completion of the course, a student will be

CO 1	Able to understand the basic concepts of C programming language and their implementation.
CO 2	Able to design and develop various programming problems using C programming concepts.
CO 3	Able to analyze and develop programs on pointers and functions.
CO 4	Able to develop programs on different operations on arrays, matrices & strings.
CO 5	Able to implement programs on structure, union & Dynamic memory allocation.

CO-PO MAPPING:

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO]														
CO1	1	1	2		3		3						2	1	1
CO2	1	1	1	2	1		3						2	1	1
CO3	1	2	2	2			3						2	1	1
CO4	1	2	2	2			3						2	1	1
CO5	1	2	1				3						2	1	1
	1. Low Association			on	2: Average Association					3: Strong Association					•

PROFESSIONAL COMMUNICATION LAB (LN-151)

- Day 1. Introductions (Instructors, Students and Curriculum)
- Day 2. Listening exercises
- Day 3. Framing Questions
- Day 4. Making Small talks
- Day 5. Presentation Making-tips, do's and don'ts/group presentations
- Day 6. Group presentations
- Day 7. Phonetic alphabet
- Day 8. Phonetic transcription
- Day 9. Intonation
- Day 10. Stress
- Day 11. . Working on Negotiations
- Day 12- 14Situational conversational section- Social language, emergency situations/ seeking help, inquiries, communicating bad news
- Day 15: Exercise on cross cultural communication

13/2/14)

Integral University, Lucknow Department of Computer Science & Engineering B.Tech (CSE), 2nd Year/3rd Semester

Subject Name: Data Structure Using C, Subject Code: CS-204 w.e.f Session 2016

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Describe the basics of Data structure operation and programming implementation skills
CO 2	Stack and Queue and various application based on these data structures
CO 3	Learning the different types of tree and learn its augmentation to control the operation complexity.
CO 4	Learn different sorting and searching algorithms and analyze their performances.
CO 5	Learning File and record management, implementing various searching and routing applications
	on graph.

Objective:Explain the basics of Data Structure, their Managements and Operations such as array, string manipulations and various operation over linked list. Programming implementation

- To learn stack, queue and various operations, different application based on given data structure such as, recursion, polish and reverse polish conversion parenthesis management, priority Queue. Programming implementations
- Understand the deep knowledge of tree data structure and its various applications to control the operation complexity management. Programming implementation
- To study the various sorting and searching strategy and different algorithms approach, know hashing and collision resolving techniques. Programming implementation
- Understand the new range of hierarchical data structure such as Graph and various routing and traversal algorithms over the graph. Introduction to file and record handling

UNIT I	Introduction to Data Structures	9
	Basic Terminology, Elementary Data Organization, Data Structure Operations.	
	Algorithms, Analysis of Algorithms, Complexity of Algorithms, Time-Space	
	Tradeoff.	
	Arrays: Array Definition, Representation and Analysis, Single and Multi-	
	Dimensional Arrays, Address Calculation, Application of Arrays, Character String	
	Representation, Character String Operation, Sparse Matrices & Vectors.	
	Linked List: Representation and Implementation of Singly Linked List,	
	Traversing, Searching of Linked List, Insertion & Deletion to/from Linked List,	
	Underflow & Overflow. Circular Linked List, Doubly Linked List, Two- way	
	Header List, Polynomial Representation & Addition, Generalized Linked List,	
	Garbage Collection and Compaction.	
UNIT II	Stacks	9
	Array Representation and Implementation of Stack, Operations on Stacks: Push &	
	Pop, Linked Representation of Stack, Application of Stack: Conversion of Infix to	
	Prefix and Postfix Expressions, Evaluation of Postfix Expression using Stack.	
	Recursion: Recursive Definition and Processes, Recursion in C, Example of	
	Recursion, Tower of Hanoi Problem.	

	Queues: Array and Linked Representation and Implementation of Queues, Operations on Queue: Create, Add, Delete, Full and Empty; Circular Queues, Dqueues and Priority Queues.	
UNIT III	Trees	8
	Basic Terminology, Binary Trees, Binary Tree Representation, Algebraic Expressions, Complete Binary Tree, Extended Binary Trees, Array and Linked Representation of Binary Trees, Traversing Binary Trees, Threaded Binary Trees, Traversing Threaded Binary Trees, Huffman Algorithm, Binary Search Tree (BST), Insertion and Deletion in BST, Path Length, AVL Trees, B-trees.	
UNIT IV	Searching and Hashing Sequential Search, Binary Search, Comparison and Analysis, Hash Table, Hash Functions, Collision Resolution Strategies, Hash Table Implementation. Sorting: Insertion Sort, Bubble Sort, Quick Sort, Two Way Merge Sort, Heap Sort.	7
UNIT V	Graphs Terminology & Representations, Graphs & Multi-Graphs, Directed Graphs, Sequential Representations of Graphs, Adjacency Matrices, Traversal, Connected Component and Spanning Trees, Minimum Cost Spanning Trees. File Handling: Physical Storage Media File Organization, Organization of Records into Blocks, Sequential Files, Indexing and Hashing, Primary Indices, Secondary Indices	7

- 1. A. M. Tannenbaum. "Data Structure Using C/C+"
- 2. Horowitz And Sahani "Fundamental of Data Structure", Galgotia Publication
- 3. Lipschutz "Data Structure", Schaum series.

CO-PO/PSO MAPPING

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO]														
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1
CO5	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
	1. Low Association						rage A	Associ	ation	3	3: Strong Association				

Integral University, Lucknow Department of Computer Science & Engineering B.Tech (CSE), 2nd Year/3rd Semester

Subject Name: Object Oriented Concepts using Java, Subject Code: CS270 w.e.fSession 2020-21

Pre-requisite	re-requisite Co-requisite		T	P	C	
None	None	3	1	0	4	

CO 1	Describe the basics of Data structure operation and programming implementation skills
CO 2	Stack and Queue and various application based on these data structures
CO 3	Learning the different types of tree and learn its augmentation to control the operation complexity.
CO 4	Learn different sorting and searching algorithms and analyze their performances.
CO 5	Learning File and record management, implementing various searching and routing applications
	on graph.

Objective:Explain the basics of Data Structure, their Managements and Operations such as array, string manipulations and various operation over linked list. Programming implementation

- To learn stack, queue and various operations, different application based on given data structure such as, recursion, polish and reverse polish conversion parenthesis management, priority Queue. Programming implementations
- Understand the deep knowledge of tree data structure and its various applications to control the operation complexity management. Programming implementation
- To study the various sorting and searching strategy and different algorithms approach, know hashing and collision resolving techniques. Programming implementation
- Understand the new range of hierarchical data structure such as Graph and various routing and traversal algorithms over the graph. Introduction to file and record handling.

UNIT I	Introduction	9				
	Programming language Types and Paradigms, Computer Programming Hierarchy,					
	Features of Java Language, JVM –The heart of Java, Java's Magic Bytecode.					
	The Java Environment:Installing Java, Java Program Development, Java Source					
	File, Structure, Compilation, Executions.					
	Basic Language Elements: Lexical Tokens, Identifiers, Keywords, Literals,					
	Comments, Primitive Data types, Operators Assignments.					
UNIT II	Object Oriented Programming using Java					
	Class Fundamentals, Object & Object reference, Object Life time & Garbage					
	Collection, Creating and Operating Objects, Constructor & initialization code					
	block, Access Control, Modifiers, methods Nested , Inner Class & Anonymous					
	Classes ,Abstract Class & Interfaces Defining Methods, Argument Passing					
	Mechanism, Method Overloading, Recursion, Dealing with Static Members,					
	Finalize() Method, Native Method. Use of "this" reference, Use of Modifiers with					
	Classes &Methods.					
UNIT III	Extending Classes and Inheritance	8				

	Use and Benefits of Inheritance in OOP, Types of Inheritance in Java, Inheriting Data members and Methods, Role of Constructors in inheritance, Overriding Super Class Methods, Use of "super", Polymorphism in inheritance, Type Compatibility and Conversion Implementing interfaces. Package: Organizing Classes and Interfaces in Packages, Package as Access Protection, Defining Package, Making JAR Files for Library Packages Import and Static Import Naming Convention For Packages.	
UNIT IV	Exception Handling	8
	Exceptions & Errors ,Types of Exception ,Control Flow In Exceptions, ,Use of try, catch, finally, throw, throws in Exception Handling ,In-built and User Defined Exceptions, Checked and Un-Checked Exceptions. Array & String:Defining an Array, Initializing & Accessing Array, Multi – Dimensional Array, Operation on String, Mutable & Immutable String, Creating Strings using StringBuffer.	
UNIT V	Thread Understanding Threads, Needs of Multi-Threaded Programming, Thread Life-Cycle, Thread Priorities, Synchronizing Threads, Inter Communication of Threads. I/O Classes:Input/output Operation in Java(java.io Package),Streams and the new I/O Capabilities ,Understanding Streams, The Classes for Input and Output, The Standard Streams, Working with File Object, File I/O Basics, Reading and Writing to Files, Buffer and Buffer Management, Read/Write Operations with File Channel.	9

- 4. T.Budd"An Introduction to OOP" Pearson Education
- 5. Naughton, Schildt, "The Complete Reference JAVA2", TMH
- 6. Balagurusamy E, "Programming in JAVA", TMH
- 7. "Head First Java" by Kathe Sierra.
- 8. "A Beginner's Guide (Sixth Edition)" by Herbert Schildt

CO-PO/PSO MAPPING

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1
CO5	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
	1. Low Association 2: Average Association 3: Strong Association														

Integral University, Lucknow Department of Computer Science & Engineering B.Tech (CSE), 2nd Year/3rd Semester

Subject Name: Principle Of Management And Engineering Economics, Subject Code: BM 225 w.e.fSession 2016

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Know about the concepts of database, their types, design concepts and ER-models
CO 2	Know about the concepts of relational databases, working with SQL for frontend development
CO 3	Know about the concepts of query optimization, transaction processing and concurrency control
CO 4	Know about the concepts of database technologies, distributed database environment
CO 5	Know about the concept of data warehouse, data cleaning and data integration

Objective: The course curriculum helps to understand the designing of the database models, understanding of the relationships between different records and databases. Its major objective is the storage, manipulation and working with the transactions. It helps in the connectivity of the large databases with the various webpages. It also introduces the concept of several technologies which helps in resolving the integrity, atomicity problems. It helps in the transformation of one type to different types. It removes multiple duplicacy, allows access to multiple users and helps in data protection.

UNIT I		8
	Nature and Significance of Economics. Meaning of Science. Engineering and	
	Technology and their Relationship with Economic Development.	
UNIT II		8
	The Concept of Demand and Supply. Elasticity of Demand and Supply,	
	Indifference Curve Analysis, Price Effect. Income Effect and Substitution Effect.	
UNIT III		8
	Functions of Money, Value of Money, Inflation and Measures to Control it, Brief	
	Idea of Functions of Banking System viz Commercial and Central Banking,	
	Business Fluctuations.	
UNIT IV		8
	Definition, Nature and Significance of Management, Evaluation of Management	
	Thought, Contributions of Max Weber. Taylor and Fayol.	
UNIT V		8
	Factors of Individual Behavior, Perception. Learning and Personality	
	Development Interpersonal Relationship and Group Behavior.	

- 9. Dewett, K.K. / Modern Economic Theory / S. Chand
- 10. Luthers Fred / OrganizaionalBehaviour

- 11. Prasd 1. M. / Principles of Management
- 12. A. W. Stonier & D. C. Horgne / A textbook of Economics Theory / Oxford Publishing House Pvt. Ltd.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO- PSO															
CO															
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1
CO5	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
1. Low Association 2: Average Association 3: Strong Association															

Integral University, Lucknow Department of Computer Science & Engineering B.Tech (CSE), 2nd Year/3rd Semester

Subject Name: Digital Electronics, Subject Code: EC-209 w.e.fSession 2016

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Know about the concepts of database, their types, design concepts and ER-models
CO 2	Know about the concepts of relational databases, working with SQL for frontend development
CO 3	Know about the concepts of query optimization, transaction processing and concurrency control
CO 4	Know about the concepts of database technologies, distributed database environment
CO 5	Know about the concept of data warehouse, data cleaning and data integration

Objective: The course curriculum helps to understand the designing of the database models, understanding of the relationships between different records and databases. Its major objective is the storage, manipulation and working with the transactions. It helps in the connectivity of the large databases with the various webpages. It also introduces the concept of several technologies which helps in resolving the integrity, atomicity problems. It helps in the transformation of one type to different types. It removes multiple duplicacy, allows access to multiple users and helps in data protection.

UNIT I	Wave shaping	8			
	RC High Pass Circuit, Low Pass Circuit, Response to Sine, Step, Pulse and Square				
	Wave Inputs. RC Circuit as a Differentiator, Integrator and Compensated				
	Attenuator.				
	Number Systems, Review of Boolean Algebra, Minimization of Boolean				
	Functions, K-Map, Don't Care Input Combinations, Tabular Method.				
UNIT II	Logic families	8			
	Use of Diode, Transistor, and MOSFET as a Digital Circuit Element; Formation of				
	Basic Logic Gates, and Study of their Input-Output Characteristics, Fan-in, Fan-				
	out, Noise Margin, Circuit Concept and Comparison of Various Logic Families-				
	TIL, IIL, ECL, NMOS and CMOS. Tristate Logic, Open Collector Output Circuits;				
	Interfacing between Logic Families; Power Consumption, Gate Delay.				
UNIT III	Combinational Circuits				
	Decoders, Encoders, Three State Devices, Multiplexer Demultiplexer, Comparator,				
	Adder, Sub Tractor, ALU, Hazards and its Avoidance.				
UNIT IV	Sequential Circuit				
	Latches, Flip Flops, Shift Registers, Counters; Synchronous and Asynchronous				
	Sequential Circuits, Multi-vibrators.				
UNIT V	Memory	8			

PLD;FPGA, Bi CMOS circuits.	ROM, PROM, EPROM & EEPROM; RAM, SRAM and DRAM; PLA, PAL,	
	PLD;FPGA, Bi CMOS circuits.	

- 13. Mano, M. Morris / "Digital Design" / Prentice Hall /
- 14. Mano, M. Morris / "Digital Logic and computer Design" / PHI
- 15. Gopalan, k. "Go pal" / Introduction to Digital Microelectronic circuits" / TMH.
- 16. Jacob Mill man and Herbert Taub / Pulse, Digital and switching wave forms "TMH
- 17. Malvino, A.P. and Leach. Donald P. / "Digital Principles and applications"/ TMH.
- 18. R. P. Jain, Modem Digital Electronics, TMH.
- 19. J. M. Yarbrough, Digital Logic: Applications and Design' Vikas Publishing.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO	1														
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1
CO5	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
	1. Low Association 2: Average Association								3: Strong Association						

Integral University, Lucknow Department of Computer Science & Engineering B.Tech (CSE), 2nd Year/3rd Semester

Subject Name: Discrete Structure, Subject Code: CS 206 w.e.fSession 2016

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Describe the basic organization of computer and data representation techniques used in computer systems.
CO 2	Use the computer arithmetic in designing of CPU.
CO 3	Design the control unit using hardwired and micro programmed approach.
CO 4	Resolve the issues arising in the design of elements of memory hierarchy.
CO 5	Design the input output organization and resolve the issues arising in data transfer.

Objective:Explain the basic components of computer, their interconnection and data representation techniques in computer systems

- To assess the working of CPU and become familiar with computer arithmetic's.
- Understand the control unit design using hardwired and micro programmed approach.
- To study the memory organization and articulate design issues in each element of memory hierarchy.
- Understand the input output organization, data transfer, and modes of communication.

UNIT I	Set Theory	9						
	Definition of Sets, Countable and Uncountable Sets, Venn Diagrams, Proofs of							
	Some General Identities on Sets							
	Relation: Definition, Types of Relation, Composition of Relations, Pictorial							
	Representation of Relation, Equivalence Relation, Partial Ordering Relation.							
	Function: Definition, Type of Functions, One to One, Into and Onto Function,							
	Inverse Function, of Functions, Recursively Defined Functions.							
	Theorem Proving Techniques: Mathematical Induction Simple and Strong),							
	Pigeonhole Principle, Prove by Contradiction.							
UNIT II	Algebraic Structures	8						
	Definition, Properties, Types: Semi Groups, Monoid, Groups, Abelian Group,							
	Properties of Groups, Subgroup, Cyclic Groups, Cosets, Factor Group,							
	Permutation Groups, Normal Subgroup, Homomorphism and Isomorphism of							
	Groups, Example and Standard Results, Rings and Fields: Definition and Standard							
	Results.							
UNIT III	Posets, Hasse Diagram and Lattices	9						

	Introduction, Ordered Set, Hasse Diagram of Partially, Ordered Set, Isomorphic Ordered Set, Well Ordered Set, Properties of Lattices, Bounded I and Complemented Lattices. Boolean Algebra: Basic Definitions, Sum of Products and Product of Sums, Form in Boolean Algebra, Logic Gates and Karnaugh Maps. Tree: Definition, Rooted Tree, Properties of Trees, Binary Search Tree, Tree Traversal.	
UNIT IV	Propositional Logic Proposition, First Order Logic, Basic Logical Operation, Truth Tables, Tautologies, Contradictions, Algebra of Proposition, Logical Implications, Logical Equivalence, Predicates, Universal And Existential Quantifiers.	7
UNIT V	Combinatorics & Graphs Recurrence Relation, Generating Function, Simple Graph, Multi Graph, Graph Terminology, Representation of Graphs, Bipartite, Regular, Planar and Connected Graphs, Connected Components in a Graph, Euler Graphs, Hamiltonian Path and Circuits, Graph Coloring, Chromatic Number, Isomorphism and Homomorphism of Graphs.	8

- 20. Liptschutz, Seymour, "Discrete Mathematics", McGraw Hill.
- 21. Trembley, J.P & R. Manohar, "Discrete Mathematical Structure with Application to Computer Science", McGraw Hill.
- 22. Kenneth H. Rosen, "Discrete Mathematics and its applications", McGraw Hill.
- 23. Deo, Narsingh, "Graph Theory With application to Engineering and Computer. Science.", PHI.
- 24. Krishnamurthy, V., "Combinatorics Theory & Application", East-West Press Pvt. Ltd., New Delhi.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1
CO5	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
1. Low Association					n 2	2: Average Association				3	3: Strong Association				

Integral University, Lucknow Department of Computer Science & Engineering B.Tech (CSE), 2nd Year/3rd Semester

Subject Name: Cyber Law And Information Security, Subject Code: CS-203 w.e.fSession 2016

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Understand key terms and concepts in cyber law, intellectual property and cybercrimes(internet security threats), trademarks and domain theft.										
CO 2	Keep an appropriate level of awareness, knowledge and skill on the disciplines of technology, E-business and law to allow them to minimize the occurrence and severity of information security incidents.										
CO 3	Understand about Information System and principles of Information Security (as confidentiality, integrity, and availability)										
CO 4	Understand about cryptography and techniques used to detect and prevent network intrusions.										

Objective:Knowledge about cyber law, intellectual property and cyber crimes(internet security threats), trademarks and domain theft

- Knowledgeon the disciplines of technology, E-business and law to allow them to minimize the occurrence and severity of information security incidents.
- Knowledge about Information System and principles of Information Security (as confidentiality, integrity, and availability)
- Knowledge of cryptography and techniques used to detect and prevent network intrusions.

UNIT I	Fundamentals of Cyber Law	7
	Jurisprudence of Cyber Law, Object and Scope of the IT Act 2000, Introduction	
	to Indian Cyber Law, Unicitral Model Law, ISP Guideline.	
	Intellectual property issues and cyber space, Indian perspective, Overview of	
	Intellectual property related legislation in India, Patent, Copy Right, Trademark	
	law, Law related to semiconductor layout &design.	
UNIT II	E - Commerce	8

	Security Threats to E - Commerce, Virtual Organization, Business Transactions on Web, E-Governance and EDI, Concepts in Electronics payment systems, E-Cash, Credit/Debit Cards, E- Agreement, Legal recognition of electronic and digital records, E- Commerce Issues of privacy, Wireless Computing- Security challenges in Mobile devices. Digital Signatures - Technical issues, legal issues, Electronic Records, Digital Contracts, and Requirements of Digital Signature System.	
UNIT III	Investigation and Ethics	9
	Cyber Crime, Cyber jurisdiction, Cyber crime and evidence act, Treatment of different countries of cyber crime, Ethical issues in data and software privacy, Plagiarism, Pornography, Tampering computer documents, Data privacy and protection, Domain Name System, Software piracy, Issues in ethical hacking. Internet security threats: Hacking, Cracking, Sneaking, Viruses, Trojan horse, Malicious Code & logic bombs.Introduction to biometric security and its challenges, Finger prints.Cyber crime forensic: CASE STUDY in Cyber Crime.	
UNIT IV	Information security Information Systems and its Importance, Role of Security in Internet and Web Services, Principles of Information Security, Classification of Threats and attacks, Security Challenges, Security Implication for organizations, Security services - Authentication, Confidentiality, Integrity, Availability and other terms in Information Security, Information Classification and their Roles. Introduction to Cryptography, Issues in Documents Security, Keys: Public Key, Private Key, Firewalls, Basic Concepts of Network Security, Perimeters of Network protection & Network attack, Need of Intrusion Monitoring and Detection.	9

- 1. Harish Chander "Cyber Law and IT Protection", PHI Publication, New Delhi
- 2. Merkov, Breithaupt," Information Security", Pearson Education
- 3. "Cyber Law in India" Farooq Ahmad-Pioneer books.
- 4. K. K. Singh, Akansha Singh "Information Security and Cyber law", Umesh Publication, Delhi

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1
CO5	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
	w Ass	ociatio	n 2	2: Ave	rage A	Associa	ation	3	3: Strong Association						

Integral University, Lucknow Department of Computer Science & Engineering B.Tech (CSE), 2nd Year/3rd Semester Subject Name: Human Values & Professional Ethics, Subject Code: BM-226

w.e.fSession 2016

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Know about the concepts of database, their types, design concepts and ER-models
CO 2	Know about the concepts of relational databases, working with SQL for frontend development
CO 3	Know about the concepts of query optimization, transaction processing and concurrency control
CO 4	Know about the concepts of database technologies, distributed database environment
CO 5	Know about the concept of data warehouse, data cleaning and data integration

Objective:

UNIT I	Human Value Education	6						
	Understanding the need, basic guidelines, content and process for Value							
	Education, Self Exploration - Its content and process; 'Natural Acceptance' and							
	Experiential Validation- as the mechanism for self exploration, Continuous							
	Happiness and Prosperity- A look at basic Human Aspirations, Right							
	understanding, Relationship and Physical Facilities- the basic requirements for							
	fulfillment of aspirations of every human being with their correct priority,							
	Understanding Happiness and Prosperity correctly.							
UNIT II	Introduction to Ethical Concept							
	Definition of industrial ethics and values, Ethical rules of industrial worker.							
	Values and Value Judgments. Moral Rights and Moral rules, Moral character							
	and responsibilities. Privacy, Confidentiality, Intellectual Property and the Law.							
	Ethics as Law							
UNIT III	Professional Responsibility	6						
-	The basis and scope of Professional Responsibility, Professions and Norms of							
	Professional Conduct, Ethical Standards versus Profession, Culpable mistakes,							
	the Autonomy of professions and codes of ethics. Employee status and							
	Professionalism. Central Professional Responsibilities of Engineers: The							
	emerging consensus on the Responsibility for safety among engineers, hazards							
	and risks.							
UNIT IV	Engineers Ethics	6						

dilemmas - moral autonor and controversy – Models	ics' - variety of moral issues - types of inquiry - moral by - Kohlberg's theory - Gilligan's theory - consensus of Professional Roles- theories about right action - d religion - uses of ethical theories. Valuing Time — ent	
Global Issues		6
A Glimpse of Life Sto	ries: Life story of Prophet Mohammad, Mahatma	
Gandhi, Swami Vivekanar	d, Marie Curie and Steve Jobs.	
Multinational corporations	- Environmental ethics - computer ethics - weapons	
development - engineers	s managers-consulting engineers-engineers as expert	
witnesses and advisors -me	oral leadership	

- 1. R R Gaur, R Sangal, G P Bagaria, 2009, A Foundation Course in Value Education.
- 2. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 1996.
- 3. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1
	•	1. Lov	v Asso	ociatio	n 2	2: Average Association					3: Strong Association				•

COURSE: DATA STRUCTURE USING C LAB

COURSE CODE: CS208

COURSE CREDIT: 1

COURSE OBJECTIVES:

- 1. To develop skills to design and analyze simple linear and non linear data structures.
- 2. To design and implement various data structure algorithms.
- 3. To introduce various techniques for representation of the data in the real world.
- 4. To identify and apply the suitable data structure for the given real world problem
- 5. To write algorithms for solving problems with the help of fundamental data structures

COURSE OUTCOMES (CO):

After completion of the course, a student will be

CO 1	Able to handle operations like insertion, deletion, traversingmechanism etc. on various data
	structures.
CO 2	Able toimplement the stack, Queue and their applications
CO 3	Able to implement different types of trees and Binary Tree Traversal.
CO 4	Able to implement different Sorting and Search methods
CO 5	Able to perform basic operations (creation and traversal) on graphs and determine minimum
	spanning tree

List of Experiments:

- 1. To implement traversing, insertion and deletion in arrays.
- 2. To implement, addition, Multiplication of Two sparse Matrices.
- 3. To implement insertion, deletion and pattern matching of a substring in a given string using linked list.
- 4. To implement Insertion and deletion in Singly Linked List at Given Location as well as for a Given Item in sorted List.
- 5. To Implement Insertion and deletion in Circular Linked List.
- 6. To implement insertion and Deletion in Stack and Queue using arrays and pointer.
- 7. To implement Fibonacci Series and Tower of Hanoi Using Recursion.
- 8. Creation of Trees and Tree Traversal Algorithms: Recursive and Non-Recursive.
- 9. Creation of Graphs and Graph Traversal Algorithms.
- 10. Sorting:
 - a) Insertion Sort
 - b) Ouick Sort
 - c) Merge Sort
 - d) Bubble Sort
 - e) Heap Sort
- 11. Implementation of Sparse Matrix and Polynomial using Linklist.

PSO														
CO														
CO1	3	3	3	2	2	1					2	1	1	
CO2	3	3	3	3	3	1					2	1	3	
CO3	3	3	3	3	3	1					2	1	3	
CO4	3	3	3	3	3	1					2	1	2	1
CO5	3	3	3	3	3	1					2	1	1	2
	1. Low Association 2: Average Association										3: Stroi	ig Asso	ciation	

COURSE: Python Programming LAB

COURSE CODE: CS272

COURSE CREDIT: 1

SYLLABUS:

- 1. Understanding Python installation and its Integrated Development Environments (IDEs).
- 2. Write a program to illustrate various data types & concepts of variables/Constant in Python.
- 3. Write a program to perform different Arithmetic Operations on numbers in Python (Addition, Subtraction, Multiplication, Division, etc.)
- 4. Write a program in python to demonstrate the concept of "Loop" and print the following pattern of prime numbers if input is number of lines. e.g.; if n=3, output should be:
- 5. Write a program to implement the concept of "List" (create, append, and remove lists in python).
- 6. Write a program to search an input number in a list of n numbers and print a "YES" along with its position (index) otherwise print a "No".
- 7. Write a program to create, concatenate and print a "String" and accessing sub-string from a given string.
- 8. Write a program to demonstrate working of "Tuples" in python.
- 9. Write a program to illustrate the working of "Dictionaries" in python.
- 10. Write a program to check whether input string is "Pangram" or not.
- 11. Write a program to find factorial of a number using "Recursion".
- 12. Write a program implement the concept of "Functions" in python and sort "n" numbers in ascending and descending order after taking input (Integer number) from user.

- 13. Write a program to define a "module" and import a specific function in that module to another program.
- 14. Write a program that reads an input text "File" and prints all of the unique words in the file in (alphabetical order).
- 15. Write a program that depicts the implementation of Python "Class" which reverse a string word by word.
- 16. Write a python script to print the current date in the following format "Sun May 29 02:26:23 IST 2017"
- 17. Write a Python class to implement pow(x, n)
- 18. Write a program to implement the working of "NumPy" in python.

Text Books:

- 1. Guido van Rossum and Fred L. Drake Jr., —An Introduction to Python Revised andupdated for Python 3.2, Network Theory Ltd., 2011
- 2. Kenneth A. Lambert, —Fundamentals of Python: First Programs, CENGAGE Learning, 2012.
- 3. Timothy A. Budd, —Exploring Python, Mc-Graw Hill Education (India) Private Ltd., 2015.
- 4. Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming inPython: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

COURSE OBJECTIVES:

- 1. To build a strong foundation of python and its IDEs.
- 2. Study of various object oriented programming constructs and data structures available in Python.
- **3.** Writing and using functions and modules.
- **4.** Developing file handling applications.
- **5.** Exploring the use of libraries in developing real-world applications.

COURSE OUTCOMES (CO):

After completion of the course, a student will be

CO 1	Install and configure python and its IDEs.
CO 2	Write basic programs using the various data structures provided in python.
CO 3	Develop small modules and components using object-oriented methodology.
CO 4	Use the libraries and develop file handling applications.
CO 5	Develop some working applications using python.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															

CO1	3	2	2	3	3	1	1	1	1	1	2	1	2	3	1
CO2	3	2	1	1	2	1	1	1	1	1	1	2	3	2	3
CO3	2	3	2	2	3	1	1	2	1	2	1	2	2	3	2
CO4	3	1	2	1	2	1	1	2	2	1	1	1	2	2	3
CO5	2	3	3	3	3	2	1	2	2	1	2	2	3	2	2
	1. Low Association 2: Average Association									3	3: Stron	ıg Asso	ciation		

COURSE: OBJECT ORIENTED CONCEPT USING JAVA LAB

COURSE CODE: CS271

COURSE CREDIT: 1

COURSE OBJECTIVES:

- To learn the basic concepts and syntax of object oriented programming.
- To be able to develop logics which help them to create programs and applications using java language.
- To learn the use of exception handling.
- To learn the use of methods and threads.
- After learning the object oriented programming they can easily create desktop based projects.

COURSE OUTCOMES (CO):

After completion of the course, a student will be

CO 1	Use an integrated development environment to write, compile, run, and test simple object-oriented Java programs.
CO 2	Read and make elementary modifications to Java programs that solve real-world problems.

CO 3	Validate input in a Java program.
CO 4	Identify and fix defects and common security issues in code.
CO 5	Document a Java program using Javadoc.

List of Experiments:

- 1.Create a class named 'Student' with String variable 'name' and integer variable 'roll_no'. Assign the value of roll_no as '2' and that of name as "John" by creating an object of the class Student.
- 2.Print the average of three numbers entered by user by creating a class named 'Average' having a method to calculate and print the average.
- 3. Write a program that would print the information (name, year of joining, salary, address) of three employees by creating a class named 'Employee'.
- 4. Write a program to print the area and perimeter of a triangle having sides of 3, 4 and 5 units by creating a class named 'Triangle' with constructor having the three sides as its parameters.
- 5.Create a class called 'Matrix' containing constructor that initializes the number of rows and number of columns of a new Matrix object. The Matrix class has the following information:
 - a. number of rows of matrix
 - b. number of columns of matrix
 - c. elements of matrix in the form of 2D array
- 6. Write a program to print the names of students by creating a Student class. If no name is passed while creating an object of Student class, then the name should be "Unknown", otherwise the name should be equal to the String value passed while creating object of Student class.
- 7.Create a class named 'Member' having the following members:

Data members

- 1. Name
- 2. Age
- 3. Phone number
- 4. Address
- 5. Salary

It also has a method named 'printSalary' which prints the salary of the members. Two classes 'Employee' and 'Manager' inherits the 'Member' class. The 'Employee' and 'Manager' classes have data members 'specialization' and 'department' respectively. Now, assign name, age, phone number, address and salary to an employee and a manager by making an object of both of these classes and print the same.

- 8.Create a class with a method that prints "This is parent class" and its subclass with another method that prints "This is child class". Now, create an object for each of the class and call
 - 1. method of parent class by object of parent class
 - 2. method of child class by object of child class
 - 3. method of parent class by object of child class

- 9. Write a program to perform inheritance where animal is the superclass and cat is the subclass.
- 10. Write a java program to calculate the average value of array elements where array elements are {20,30,25,25,-16,60,-100}
- 10.Program to calculate any shape area while using Encapsulation
- 12.Program to perform Overloading by changing datatypes of parameters

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	1	1	2		3		3						2		1
CO2	1	1	1	2	1		3						2	1	1
CO3	1	2	2	2			3							1	1
CO4	1		2	2			3						2	1	1
CO5	1	2	1				3						2	1	
	1. Low Association 2: Average Association 3: Strong Association														

Integral University, Lucknow Department of Computer Science & Engineering B.Tech (CSE), 2nd Year/4th Semester

Subject Name: Computer Graphics, Subject Code: CS-207 w.e.f Session 2016

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Know about the concept of Computer Graphics components and their relevance to classical and modern problems.
CO 2	Know about the concept of writing algorithms for Line generation, Curve generation, Display File, Segments and Polygon filling.
CO 3	Know about the concept of mapping from a world coordinate system to device coordinates, clipping, and projections.
CO 4	Know about the concept and principles of Two Dimensional & Three Dimensional Computer Graphics primitive operations (Translation, Scaling, Rotation, Reflection, Shearing and problems based on these).
CO 5	Know about the concept of Curve generation, Hidden line surface removal techniques and concepts on Animation.

Objective: Basic concepts of Computer Graphics components and their relevance to classical and modern problems.

- Study of algorithms for Line generation, Curve generation, Display File, Segments and Polygon filling.
- Knowledge of mapping from a world coordinate system to device coordinates, clipping, and projections.
- Basic concepts and principles of Two Dimensional & Three Dimensional Computer Graphics primitive operations (Translation, Scaling, Rotation, Reflection, Shearing and problems based on these).
- Study of Curve generation, Hidden line surface removal techniques and concepts on Animation.

UNIT I	Introduction	8							
	Representing Pictures, Pixels and Frame Buffers, Vector and Character								
	Generation. Graphics Primitives: Display Devices, Primitive Devices, Display File								
	Structure, Display Control Text. Line Drawing Algorithms: Digital Differential								
	Analyzer, Bresenham's Algorithms. Circle Generation: Bresenham's, Mid Point								
	Algorithm.								
UNIT II	Polygon	8							
	Polygon Representation, Entering Polygons, Filling Polygons: Flood Fill								
	Algorithm, Boundary-Fill Algorithm and Scan-line Polygon Filling Algorithm.								
	Segments: Segments Table, Creating Deleting and Renaming Segments, Visibility,								
	Image Transformations.								
UNIT III	Two Dimensional Transformations	9							
	Representation of Points, Homogeneous Coordinates. Transformation: Translation,								
	Rotation, Scaling, Reflection, Shearing. Windowing: Introduction, Viewing								
	Transformation- Window to Viewport Coordinate Transformation Multiple								
	Windowing. Clipping: Line Clipping- Cohen-Sutherland, Midpoint Subdivision,								
	Cyrus-Beck Algorithm, Polygon Clipping-Sutherland-Hodgman.								

UNIT IV	Three Dimensional Transformation	7
	3-D Geometry Primitives, Transformations: Translation, Rotation, Scaling,	
	Reflection, Shearing. Projection: Orthographic, Axonometric, Oblique,	
	Perspective.	
UNIT V	Hidden Line and Surface	9
	Back Face Removal Algorithms, Hidden Line Methods: Floating Horizon, Z-	
	Buffer, Painter's Algorithm, Warnock's Algorithm. Introduction to Curve	
	Generation, Bezier, Hermite and B-spline Algorithms and their Comparisons.	
	Surface Rendering: Simple Illumination Model, Phong&Gourad Shading.	
	Animation: Introduction, Design of Animation Sequences, Keyframe System,	
	Parameterized System, Morphing, Motion Specification.	

- 1. Rogers, "Procedural Elements of Computer Graphics", McGraw Hill.
- 2. Rogar and Adams, "Mathematical Elements of Computer Graphics", McGraw Hill .
- 3. Newman and Sproul, "Principle of Interactive Computer Graphics", Mc G raw Hill.
- 4. Steven Harrington, "Computer Graphics", A programming Approach 2nd Edition.
- 5. Hearn & Baker, "Computer Graphics.

1. Low Association 2:						2: Ave	rage A	age Association 3: Strong Association							
CO5		2	2	3	1	2	1	3		2	1	2		2	
CO4	3	2		2	3	1	1	3	2	2		3	2	3	1
CO3			2	2	1		3		3		1	2			2
CO2	3	2		1	1	2		2	2	2		1	3	2	
CO1	1	2	2	3	1	2	1	3		2	1	2	1		2
CO															
PSO															
PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

Integral University, Lucknow DepartmentofMathematics B.Tech:2ndyear / 4thSemester

Subject Name: Mathematical Analysis (For CSE only) Subject Code: MT206 (Revisedw.e.f. session2017-18)

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

UNIT I		8
	Bisection Method, Iteration Method, False Position Method, Newton-Raphson Method.	
	Rate	
	of Convergence of Methods. Solution of system of linear equations by LU decomposition method.	
UNIT		8
II	Finite differences, Newton's forward & backward formula, Gauss forward and backward	
	formula forequal intervals. Lagrange's and Newton's divided difference formula for unequal intervals, Numerical differentiation.	
UNIT		8
III	Numerical Integration by Trapezoidal Rule, Simpson's 1/3 Rule, Simpson's 3/8 Rule,	
	Boole's & Weddle's Rule.	
	Numerical solution of ordinary differential equations by Euler's Method, Modified	
	Euler's Method and Runge-Kutta Method.	
UNIT		8
IV	Analytic functions, C-R equations, Cauchy's integral theorem, Cauchy's integral formula	
	forderivativesofanalytic functions, Conformalmapping, Bilineartransformation.	
UNIT		8
V	Correlation and Regression Analysis, Definition of Probability: Classical and Axiomatic,	
	Conditional Probability, Baye's theorem, Binomial Distribution, Poisson distribution and	
	Normal Distribution.	
	A total Distriction.	

References:

- 1. Sastry, Introductory method of Numerical Analysis, PHI, New Delhi.
- 2. Balaguruswamy, Numerical method, TMH, New Delhi.
- 3. Jain, Iyengar, Jain, Numerical Methods for Scientific & Engineering Computations, New Age International, New Delhi.

- 4. P. Kandasamy, Numerical Methods, S. Chand & Company, New Delhi.
- 5. H.K. Dass, Introduction to Engineering Mathematics, S. Chand & Company, New Delhi.
- 6. B.S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- 7. Q.S. Ahmad, Z.Khan&S.A.Khan, Numerical and Statistical Techniques, Ane Books Pvt.Ltd., New Delhi.

CO-PO/PSO MAPPING

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO	7														
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
CO2	3	2	1	1	1	2			2	2	3	1	3	2	2
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2
CO4	3	2	1		3	1	1		2		3	3	2		1
CO5	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2
	1. Low Association 2: Average Association 3: Strong Association														

Integral University, Lucknow Department of Computer Science & Engineering B.Tech (CSE), 2nd Year/4th Semester

Subject Name: Database Management System, Subject Code: CS-212

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Explain the features of database management systems and relational database.
	Design conceptual models of a database using ER modeling for real life applications
CO 2	Create and populate a RDBMS for a real life application, with constraints and keys, using SQL.
	Retrieve any type of information from a database by formulating complex queries in SQL &
	Relational Algebra.
CO 3	Analyze the existing design of a database schema and apply concepts of normalization to design
	an optimal and efficient database.
CO 4	Analyze the concepts of indexing, hashing, database transactions, serializability, recoverability,
	deadlock, and ways to recover from deadlock.
CO 5	Explain database locks, timestamps and various concurrency control protocols to manage
	concurrent database access.

Objective:

• To describe a sound introduction to the discipline of database management systems and introduce concepts of the Entity-Relationship model.

- To build concepts of relational data model design by writing database queries using Relational Algebra and basic SQL as a universal database language
- To demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization.
- To provide an overview of the concept of transactions, serializability, recoverability, deadlock, and how to recover from deadlock.
- To understand database locks, timestamps and various concurrency control protocols.

Introduction: An Overview of Database Management System, Database System Vs File System, Database System Concepts and Architecture, Data Models Schema and Instances, Data Independence and Data Base Language and Interfaces, Data Definitions Language, DML, Overall Database Structure. Data Modeling Using the Entity Relationship Model: ER Model Concepts, Notation for ER Diagram, Examples based on E-R diagram, Mapping Constraints, Keys, Concepts of Super Key, Candidate Key, Primary Key, Generalization, Aggregation, Reduction of an ER Diagrams to Tables, Extended ER Model, Relationships of Higher Degree. UNIT II Relational Data Model and Language: Relational Data Model Concepts, Integrity Constraints; Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability, Recovery from Transaction Failures, Log Based Recovery, Checkpoints, Deadlock Handling.	UNIT I		9
Schema and Instances, Data Independence and Data Base Language and Interfaces, Data Definitions Language, DML, Overall Database Structure. Data Modeling Using the Entity Relationship Model: ER Model Concepts, Notation for ER Diagram, Examples based on E-R diagram, Mapping Constraints, Keys, Concepts of Super Key, Candidate Key, Primary Key, Generalization, Aggregation, Reduction of an ER Diagrams to Tables, Extended ER Model, Relationships of Higher Degree. UNIT II Relational Data Model and Language: Relational Data Model Concepts, Integrity Constraints: Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability, Recovery from Transaction Failures, Log Based Recovery,		Introduction: An Overview of Database Management System, Database System	
Data Definitions Language, DML, Overall Database Structure. Data Modeling Using the Entity Relationship Model: ER Model Concepts, Notation for ER Diagram, Examples based on E-R diagram, Mapping Constraints, Keys, Concepts of Super Key, Candidate Key, Primary Key, Generalization, Aggregation, Reduction of an ER Diagrams to Tables, Extended ER Model, Relationships of Higher Degree. WITH Relational Data Model and Language: Relational Data Model Concepts, Integrity Constraints: Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Vs File System, Database System Concepts and Architecture, Data Models	
Data Modeling Using the Entity Relationship Model: ER Model Concepts, Notation for ER Diagram, Examples based on E-R diagram, Mapping Constraints, Keys, Concepts of Super Key, Candidate Key, Primary Key, Generalization, Aggregation, Reduction of an ER Diagrams to Tables, Extended ER Model, Relationships of Higher Degree. Relational Data Model and Language: Relational Data Model Concepts, Integrity Constraints: Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Schema and Instances, Data Independence and Data Base Language and Interfaces,	
Notation for ER Diagram, Examples based on E-R diagram, Mapping Constraints, Keys, Concepts of Super Key, Candidate Key, Primary Key, Generalization, Aggregation, Reduction of an ER Diagrams to Tables, Extended ER Model, Relationships of Higher Degree. VIII 10		Data Definitions Language, DML, Overall Database Structure.	
Keys, Concepts of Super Key, Candidate Key, Primary Key, Generalization, Aggregation, Reduction of an ER Diagrams to Tables, Extended ER Model, Relationships of Higher Degree. UNIT II Relational Data Model and Language: Relational Data Model Concepts, Integrity Constraints: Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Data Modeling Using the Entity Relationship Model: ER Model Concepts,	
Aggregation, Reduction of an ER Diagrams to Tables, Extended ER Model, Relationships of Higher Degree. WINIT II Relational Data Model and Language: Relational Data Model Concepts, Integrity Constraints: Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability, Recovery from Transaction Failures, Log Based Recovery,		Notation for ER Diagram, Examples based on E-R diagram, Mapping Constraints,	
Relationships of Higher Degree. WINIT II Relational Data Model and Language: Relational Data Model Concepts, Integrity Constraints: Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Keys, Concepts of Super Key, Candidate Key, Primary Key, Generalization,	
Relational Data Model and Language: Relational Data Model Concepts, Integrity Constraints: Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Aggregation, Reduction of an ER Diagrams to Tables, Extended ER Model,	
Relational Data Model and Language: Relational Data Model Concepts, Integrity Constraints: Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III 8 Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Relationships of Higher Degree.	
Integrity Constraints: Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,	UNIT II		8
Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Relational Data Model and Language: Relational Data Model Concepts,	
Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Integrity Constraints: Entity Integrity, Referential Integrity, Keys Constraints,	
Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. WNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain	
Types and Literals. Types of SQL Commands. SQL Operators and Their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV 10		Calculus.	
Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV		Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data	
Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection, Minus, Cursors in SQL. UNIT III		Types and Literals. Types of SQL Commands. SQL Operators and Their	
Minus, Cursors in SQL. UNIT III		Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate	
UNIT III Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Functions. Insert, Update and Delete Operations. Joins, Unions, Intersection,	
Data Base Design & Normalization: Functional Dependencies, Normal Forms, First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Minus, Cursors in SQL.	
First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,	UNIT III		8
Join Decompositions, Normalization using FD, MVD, and JDs, Alternative Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Data Base Design & Normalization: Functional Dependencies, Normal Forms,	
Approaches to Database Design. Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		First, Second, Third Normal Forms, BCNF, Inclusion Dependences, Loss Less	
Storage and File Structure: Overview of Physical Storage Media, File Organization, Organization of Records in File, Data Dictionary Storage. UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Join Decompositions, Normalization using FD, MVD, and JDs, Alternative	
Organization, Organization of Records in File, Data Dictionary Storage. 8 Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Approaches to Database Design.	
UNIT IV Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Storage and File Structure: Overview of Physical Storage Media, File	
Indexing & Hashing: Basic Concepts, B+ Tree Index Files, B- Tree Index Files, Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,		Organization, Organization of Records in File, Data Dictionary Storage.	
Static Hashing, Dynamic Hashing. Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,	UNIT IV		8
Transaction Processing Concepts: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,			
Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery,			
Recoverability, Recovery from Transaction Failures, Log Based Recovery,			
		· · · · · · · · · · · · · · · · · · ·	
Checkpoints, Deadlock Handling.		Recoverability, Recovery from Transaction Failures, Log Based Recovery,	
		Checkpoints, Deadlock Handling.	
UNIT V 8	UNIT V		8
Concurrency Control Techniques: Concurrency Control, Locking Techniques		•	
for Concurrency Control, Time Stamping Protocols forConcurrency Control,		for Concurrency Control, Time Stamping Protocols forConcurrency Control,	
Validation Based Protocol, Multiple Granularity, Multi Version Schemes,		Validation Based Protocol, Multiple Granularity, Multi Version Schemes,	
Recovery with Concurrent Transaction.			

- Korth, Silbertz, Sudarshan, "Data base concepts", McGraw-Hili
 Elmasari, Navathe, "Fundamentals of Database Systems", Addison Wesley
 Date C.J., "An Introduction to Database Systems", Addison Wesley

СО		PO										PSO				
10	PO	PO2	PO	PO	PO	PO	PO	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
	I		3	4	5	6	7									
CO1	3	1	1	1	1	2		2	2	1		3	1	1		2
CO2	2	2	3	3	2	1		1	2			2	1	2	1	3
CO3	3	2	1	1	2	2	3	1	2			3	1	2	1	
CO4	3	2	2	2	3	3				1		2		1	2	2
CO5	3	1	1	1	1	2	1					2	1	3	2	
	1. Low Association					Averag	verage Association 3: Strong				g Ass	ssociation				

Integral University, Lucknow Department of Computer Science & Engineering B.Tech (CSE), 2nd Year/4th Semester

Subject Name: Computer Organization & Architecture, Subject Code: CS-284 w.e.fSession 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Describe the basic organization of computer and data representation techniques used in computer
	systems.
CO 2	Resolve the issues arising in the design of elements of memory hierarchy.
CO 3	Explain and design the control unit using hardwired and micro programmed approach.
CO 4	Acquire the knowledge of advanced concepts of performance measure and parallel processing.
CO 5	Explain and compare high performance processors.

Objective:Explain the basic components of computer, their interconnection and data representation techniques in computer systems. To assess the working of cpu and become familiar with computer arithmetic's. Understand the control unit design using hardwired and micro programmed approach. To study the memory organization and articulate design issues in each element of memory hierarchy

UNIT I	Introduction to Computer Organization & Architecture	8			
	Elements of Digital Computer, Bus Architecture and Bus Arbitration, Micro-				
	operation, Register Transfer, Bus and Memory Transfer, Data Representation,				
	Addition and Subtraction of Signed Numbers, Booth Algorithm.				
UNIT II	Memory and Processor Organization	8			
	Memory: Main, Cache, Auxiliary and Virtual Memory, Concept of Address				
	Mapping, Addressing Modes, Central Processing Unit (CPU): Single Accumulator,				
	General Register, and Stack Organization. RISC and CISC Characteristics.				
UNIT III	Hardwired and Micro Programmed Control				
	Instruction Formats, Instruction and Interrupt Cycle, Timing and Control,				
	Hardwired Control Design: Design of Computer Registers, Execution of a				
	Computer Instruction, MicroProgrammed Control Design: Basic Concept of				
	MicroProgrammed Control design, Microprogram Sequencer.				
UNIT IV	Parallel and Pipeline Processing	8			
	Introduction to Parallel Processing, Parallel Architecture Classification,				
	Performance of Parallel Processors, Pipelining: Introduction, Arithmetic Pipeline,				
	Instruction Pipeline, Introduction to different types of available computers.				
UNIT V	High Performance Processors	8			
	Superscalar, Vector, and VLIW Architecture, Cache Architecture: Cache				
	Coherence and Synchronization Mechanism, Interconnection Network for Parallel				
	Computers.				

- 6. "Computer System Arch." By- Morris Mano, Prentice Hall India, New Delhi.
- 7. "Computer Organization." By- Vranesic&Hamacher, Tata Mgraw Hill, New Delhi
- 8. "Kai Hwang", Advanced Computer Architecture, McGraw Hill International.
- 9. "Moreshwar R. Bhujade", Parallel Computing, New Age International.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PSO																
CO																
CO1	3	2		1		2					1	2	2		3	
CO2	2		3	2	3			1			3	3				
CO3	3	3	3	2	2						1		2	1		2
CO4	3	3	2		3	3					3	3				1
CO5	3		3	3	2	2	1		1	2	1	2		2		
	1. Low Association 2: Average Association						ion	3: \$	Strong	Associa	tion					

Integral University, Lucknow Department of Computer Science & Engineering B.Tech (CSE), 2nd Year/4th Semester Subject Name: Disaster Management, Subject Code: ES-202

w.e.f Session 2016

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Know about the concepts of database, their types, design concepts and ER-models
CO 2	Know about the concepts of relational databases, working with SQL for frontend development
CO 3	Know about the concepts of query optimization, transaction processing and concurrency control
CO 4	Know about the concepts of database technologies, distributed database environment
CO 5	Know about the concept of data warehouse, data cleaning and data integration

Objective: The objective of this course is to familiarize the students with basic management principles relating to disaster management and mitigation techniques.

UNIT I		8								
	Concept of Disaster Management. Types of disaster and their impact:Natural and									
	Man-made like- Earthquakes, Floods, Droughts, Cyclones, Avalanches, Forest									
	Fires, Terrorism related disaster etc.									
	Assessment of Human and Economic Losses.									
UNIT II		8								
	Impact of Extensive Industrialization, Impact of Global Warming and									
	Environmental degradation, National and Global Disaster.									
UNIT III		8								
	National Policy for Disaster Management, Elementary knowledge of the disaster									
	management Act 2005. Types of Responses: Central, State, District level,									
	People's community participation in Disaster management.									
	Post Disaster management and Rehabilitation measures.									
UNIT IV		8								
	Capacity building for meeting disasters. Long- term measures for prevention of									
	Disasters. Mitigation techniques/ Strategies: Early Warning Systems, Data									
	sharing at National and International Levels.									

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
PSO																
CO																
CO1	1	2	2	3	1	2	1	3	1	2	1	2	1	2	2	
CO2	3	2	1	1	1	2	3	2	2	2	3	1	3	2	2	
CO3	2	2	2	2	1	1	3	2	3	1	1	2	2	1	2	
CO4	3	2	1	2	3	1	1	3	2	2	3	3	2	3	1	
		1. Lov	w Ass	ociatio	n 2	2: Ave	rage A	Associa	ation	3	3: Strong Association					

Integral University, Lucknow Department of Computer Science & Engineering B.Tech (CSE), 2nd Year/4th Semester

Subject Name: Graph Theory & Applications Subject Code: CS-281 w.e.fSession 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Demonstrate the knowledge of fundamental concepts in graph theory, including properties and characterization of graphs and trees.
CO 2	Apply models of Graph theory, Probability theory respectively to solve problems of connectivity and uncertainty.
CO 3	Analyzing graphs, trees and random phenomena occurring in real life situations using Graph theory.
CO 4	Interpret the models of Graph theory, Probability theory for real life and engineering problems.
CO 5	Develop efficient algorithms for graph related problems in different domains of engineering and science.

Objective:Learn the fundamental concepts in graph theory in view of its applications in modern science.Learn to understand and create mathematical proofs, including an appreciation of its significance computer science. Use the concepts of Graph theory in subsequent courses in the design and analysis of algorithms, computability theory, software engineering and computer systems. Apply concepts of the theory of probability in study of random phenomena, analyzing and interpreting data that involve uncertainties.

UNIT I	Introduction to Computer Organization & Architecture	8
	Graphs, Sub Graphs, Walks, Path & Circuits, Connected Graphs, Disconnected	
	Graphs, Operations on Graphs, Euler Graphs, Hamiltonian Paths and Circuits,	
	Trees, Pendant Vertices in Trees, Distance & Centers in Trees; Spanning Trees,	
	Fundamental Circuits. Finding all Spanning Trees of a Weighted Graphs.	
UNIT II	Memory and Processor Organization	8
	Cut Sets and Cut Vertices, Properties of all Cut Sets in a Graph, Fundamental	
	Circuit & Cut Set, Connectivity and Separability, Network Flows, Isomorphism.	
	Planar Graphs, Combinatorial and Geometric Dual, Kuratowski's two Graph,	
	Detection of Planarity	
UNIT III	Hardwired and Micro Programmed Control	8
	Introduction to Vector Space of a Graph and Vectors, Matrix Representation of	
	Graph: Incidence Matrix and its Sub Matrices, Circuit Matrix and Cut Set Matrix,	
	Path Matrix and Relationship Among Ar, Bf and Cf, Adjacency Matrices, Rank-	
	Nullity Theorem.	

UNIT IV	Parallel and Pipeline Processing	8
	Colouring, Covering & Partitioning of a Graph: Chromatic Number, Chromatic	
	Partitioning, Chromatic Polynomials, Matching, Covering, Four Colour	
	Problem. Directed Graphs: Definitions, Types, Digraphs and Binary Relations	
UNIT V	High Performance Processors	8
1	Applications of Graph Theory: Analysis and Synthesis of Contact Network,	
	Activity Networks in Project Planning: Analysis of an Activity Network, Graphs in	
	Game Theory, Graphs in Computer Programming.	

- 10. DeoNarsingh, Graph Theory with Applications to Engineering and Computer Science, PrenticeHall, India, 1974.
- 11. Bondy J.A. and U.S. Murthy, Graph Theory with Applications, The Macmillan Press Ltd.,1976.
- 12. Harary F., Graph Theory, Addison-Wesley publishing Co., 1972.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PSO																
CO																
CO1	3	3	2	1	1	3			1	1	1	3	2		3	
CO2	3	3	3	2	3		3	1			3	3				
CO3	3	2	1	1	2				2		1			1		2
CO4	3	2	2		3	3					3	3				1
CO5	3	1	1	1	2	2	1		1	2	1	2		2		
		1	. Low	Assoc	iation	2:	2: Average Association					3: Strong Association				

COURSE: COMPUTER ORGANIZATION& ARCHITECTURE LAB

COURSE CODE: CS285

COURSE CREDIT: 1

COURSE OBJECTIVES:

- To learn the basic concepts of flip flops.
- To learn about adders and registers.
- To learn the working of counters and multipliers.
- To learn the working of associative memory cell.
- To learn the working of multiplexer and demultiplexer.

COURSE OUTCOMES (CO):

After completion of the course, a student will be able to

CO 1	Design & Implement various flip flop SR, JK, D and T
COI	Design & implement various inp nop SK, JK, D and 1
CO 2	Design & Implement half adder and full adder circuit.
CO 3	Design & Implementcounter and register.
CO 4	Design & Implement associative memory cell.
CO 5	Design & Implementmultiplexer and demultiplexer.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PSO CO																
CO																
CO1	2					2				2						2
CO2	3		3	3		1	2		2				3		4	
CO3	1	1								3				2		
CO4		2	2	3		1			1				1		3	1
CO5	1		1				3			1						
		1	. Low	Assoc	iation	2:	Avera	ige As	sociat	ion	3: Strong Association					·

COURSE: COMPUTER GRAPHICS LAB

COURSE CODE: CS283

COURSE CREDIT: 1

COURSE OBJECTIVES:

- Understand the need of developing graphics application
 Learn algorithmic development of graphics primitives like: line, circle, polygon etc.
 Learn the representation and transformation of graphical images and pictures.

COURSE OUTCOMES (CO):

After completion of the course, a student will be

CO 1	Implement basic algorithms related to line & circle drawing.
CO 2	Implement various line & circle drawing algorithms.
CO 3	Hands on experiments on 2D transformations.
CO 4	Conceptual implementation of clipping and other drawing algorithms.
CO 5	Describe the importance of viewing and projections.

PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO																	
CO1	2	2	1	1	1	_	_	_	_	_	_	_	_	2	1		
CO2	2	2	1	1	1	_	_	_	_	_	_	_	_	2	1		
CO3	2	2	1	2	1	_	_	_	_	_	_	_	_	2	1		
CO4	2	2	1	2	1	_	_	_	_	_	_	_	_	2	1		
CO5	2	2	2	3	2	_	_	_	_	_	_	_	_	2	1		
	1.	. Low	Asso	ciation	1 2	2: Average Association						3: Strong Association					

COURSE: ADVANCE JAVA PROGRAMMING LAB

COURSE CODE: CS282

COURSE CREDIT: 1

COURSE OBJECTIVES:

- To learn the basic concepts and syntax of advance java programming.
- To be able to develop logics which help them to create programs and applications using java language.
- To learn the use of JDBC-ODBC.
- To learn the use of jsp and servlet.
- After learning the advance java programming they can easily create web projects.

COURSE OUTCOMES (CO):

After completion of the course, a student will be

CO 1	Able to understand the basic concepts of Advance java Programming
CO 2	Able to design and develop various web pages using applet.
CO 3	Able to analyze and develop programs on Servlet and JSP.
CO 4	Able to develop programs on different project using Swing and Bean.
CO 5	Able to implement programs using JDBC-ODBC

List of Programs:

- 1. Create GUI application using AWT & Applet classes.
- 2. Design & develop the client-server application using NET package.
- 3. Implement database application using JDBC package.
- 4. Create client server Application using RMI.
- 5. Introduction to Java Beans and EJB program.
- 6. Describe & develop Java Servlet ,HTTP request and response program.
- 7. Create a Servlet program for cookies
- 8. Create application using Java Swing package.
- 9. Introduction to Java Server Pages and its sample programs.
- 10. Design program for JSP by using JSP Exception and JSP Action Elements.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO- PSO															
CO	7														
CO1	1	1	2		3		3						2		1
CO2	1	1	1	2	1		3						2	1	1
CO3	1	2	2	2			3							1	1
CO4	1		2	2			3						2	1	1
CO5	1	2	1				3						2	1	
	1. Low Association 2: Average Association							3	3: Strong Association						

COURSE: DBMS LAB

COURSE CODE: CS220

COURSE CREDIT: 1

COURSE OBJECTIVES:

- 1. To explain basic database concepts, applications, data models, schemas and instances.
- 2. To demonstrate the use of constraints and relational algebra operations.
- 3. Develop solutions for database applications using procedures, cursors and triggers
- 4. Describe the basics of SQL and construct queries using SQL.
- 5. To familiarize issues of concurrency control and transaction management.

COURSE OUTCOMES (CO):

After completion of the course, a student will be

CO 1	Able to understand the basics of SQL and construct queries using SQL in database creation and
	interaction.
CO 2	Able to using COUNT, SUM, AVG, MAX, MIN, GROUP BY, HAVING, VIEWS Creation and
	Dropping.
CO 3	Ability to formulate queries using SQL DML/DDL/DCL commands.
CO 4	Understand various advanced queries execution such as relational constraints, joins, set operations,
	trigger.
CO 5	Able to design a commercial relational database system by writing SQL using the system.

List of Programs:

- 1. Database design using E-R Model and Normalization.
- 2. Write the queries for DDL, DML & DCL.
- 3. Write Queries using Logical Operators (=, <, > etc.)
- 4. Write queries using SQL operators (BETWEEN...AND, IN(list), LIKE, ISNULL and along with Negation expressions.)
- 5. Write SQL query using Character, Number, Date and Group Functions.
- 6. Write SQL Queries for Relational Algebra (UNION, INTERSECT and MINUS etc.)
- 7. Write queries for extracting data from more than one table (Equi-Join, Non-Equi Join, Outer Join)
- 8. Write SQL Queries for Sub queries, Nested queries.
- 9. Concept of COMMIT, ROLLBACK and CHECK POINTS.
- 10. Creation of Views.
- 11. Write programs by the use of PL/SQL (Procedures and Functions.)
- 12. High-level language extension with Cursor and with Triggers.
- 13. Creation of Forms & Reports.
- 14. Design and Implementation of the Mini Project.

PO-	PO	PO1	PO1	PO1	PSO	PSO	PSO								
PS	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
O															

CO														
CO 1	3	2	3	2	2	1				2	3	1	2	
CO 2	2	3	3	2	3	1				2	1	3		
CO 3	3	3	2	3	3	3				1	2	1	1	
CO 4	3	3	3	2	3	1				3	1	2		2
CO 5	3	2	3	1	3	1				2	1	1		2
1. Low Association 2: Average Association 3: Strong Association														

Integral University, Lucknow Department of Computer Science & Engineering Subject Name: Design and Analysis of Algorithm, Subject Code: CS-301 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Would be able to analyze the problem and design an efficient algorithm to solve it
	by using & modifying classical design techniques or creating a new solution
	technique.
CO 2	For an algorithm given all the required parameters, would be able to analyze the
	algorithm and evaluate its utility in the given situation, able to apply the approach
	where problem can be solved by smaller input then apply for larger perspective
CO 3	Given more than one solutions for the problem, would be able to evaluate and
	compare those using standard mathematical techniques and select the best solution.
CO 4	For a design problem given, would be able to compare and evaluate different Data
	Structures available and modify or create new them for the same.
CO 5	For given different problems, would be able to categorize the different kind of
	complexities and develop non deterministic solution to problems having large
	complexities.

UNIT I	Introduction:	8
	Introduction: Algorithms, Analysis of Algorithms, Growth of Functions:	
	Asymptotic Notations, Standard Notations and Common Functions; Recurrence	
	Methods: Substitution Method, Iteration Method, Recursion Tree Method,	
	Master's Method.	
UNIT II	Designing of Algorithms and Advanced Data Structure	8
	Divide & Conquer: Heap Sort, Quick Sort, Sorting in Linear Time, Medians and	
	Order Statistics.Red-Black Trees, Augmenting Data Structure, Binomial Heaps,	
	Fibonacci Heaps.	
UNIT III	Advanced Design and Analysis Techniques	8
	Greedy Algorithms: Knapsack Problem, Travelling Salesperson Problem,	
	Minimum Cost Spanning Trees: Kruskal's Algorithm, Prim's Algorithm. Dynamic	
	Programming: Longest Common Subsequence, Matrix Chain Multiplication, 0/1	
	Knapsack Problem, Single Source Shortest Path: Dijkstra's Algorithm, Bellman	
	Ford Algorithm.	
UNIT IV	Amortized Analysis, Back Tracking: and Branch & Bound	8
	Accounting Method, Aggregate Method, Potential Method, Introduction, Subset	
	Sum Problem, n-Queens problem and Introduction, 0/1 Knapsack, 15 Puzzle	
	problem.	

UNIT V	String Matching and Complexity Theory	8
	Algorithm, The Rabin-Karp Algorithm, The Knuth-MorrisPratt Algorithm. Class P	
	and NP, NP-hard Problems, NP-Complete Problems, Polynomial Reduction,	
	Approximation Algorithm	

- 1. Coremen, Rivest, Lisserson, "Algorithms", PHI.
- 2. Horwitz & Sahani, Fundamental of Computer Algorithm, Galgotia.
- 3. Michael T. Goodrich and Roberto Tamassia, Algorithm Design: Foundation, Analysis and Internet Examples, John Wiley Publications.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	1	3	3	1	3		3	1	1			1	1	3	
CO2	2	2	3	3	1	1	2	2	1			2	2	2	1
CO3	1	1	1	2	3	1		2	2			1		3	1
CO4	2	2	1	2	2	1	2	1	3		1		2	1	1
CO5	1	2	1	3	1		1		2	3	1	1	1	2	3
1. Low	1. Low Association 2: Average Association							3	: Stro	ng Ass	ociatio	n			

Integral University, Lucknow Department of Computer Science & Engineering Subject Name: Principles of Operating System Subject Code: CS303 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	The basic concepts of Operating System, its functions and services.
CO 2	Design and effective memory management scheme for the operating system where there is less
	wastage and the response time is quick.
CO 3	The basic concepts of Processes in Operating System and the application of various CPU
	scheduling algorithms.
CO 4	Analyse the basic concepts of process synchronization, deadlock and related issues.
CO 5	The basic components of file management, disk management etc and will become familiar with
	the protection and security mechanisms taken by operating system.

Objective: To introduce students with basic concepts of Operating System, its functions and services.

To critique how memory management is implemented by the operating system, including concepts of paging, segmentation, paged segmentation etc. To introduce the concepts of Processes in Operating System and various algorithms to schedule these processes. To provide the knowledge of basic concepts towards process synchronization, deadlock and related issues. To gain insight on file management, disk management etc and to become familiar with the protection and security mechanisms taken by operating system.

UNIT I	Desktop OS and Mobile OS	8
	Importance of Operating Systems; Basic Concepts and Terminology; Evolution of	
	Operating Systems: Batch, Interactive, Time Sharing & Real Time Systems.	
	Operating System Structure: Simple Structure, Layered Approach; System Calls;	
	Kernels: overview, objectives of kernel, types of kernels. Architecture, Android	
	OS, iOS, Virtual OS, Cloud OS and their design.	
UNIT II	Process, Threads, CPU Scheduling and Real Time Scheduling	8
	Introduction, Process Model, Process State, Process Control Block. Overview, benefits of threads, types of threads. Basic Concepts, Scheduling Criteria, And Types of Scheduling, Scheduling Algorithms: FCFS, SJF, Round Robin, Priority Scheduling, Multilevel Queue Scheduling, Multilevel, Feedback Scheduling. Introduction, Uniprocessor scheduling, Multiprocessor Scheduling.	
UNIT III	Process Synchronization and Deadlock	8
	Principles of Concurrency, Race Condition, Critical Section, Critical Section	
	Problem, Synchronization Mechanism, Semaphores and Classical Problems of	
	Synchronization: Bounded Buffer Problem, Readers Writers Problem.Principles,	
	System Model, Deadlock Characterization, Methods of Deadlock Handling:	
	Prevention, Avoidance, Detection & Recovery from Deadlock	
UNIT IV	Memory Management and Virtual Memory Management	8

	Introduction, logical vs. physical address space, swapping, contiguous memoryallocation, paging, segmentation, segmentation with paging. Introduction, demand paging, performance, page replacement, page replacement algorithms (FCFS, LRU, Optimal), allocation of frames, thrashing.Other Memory Management Schemes: Swapping, Overlays.	
UNIT V	Device Management, Disk Scheduling and Protection & Security Introduction, types of devices, FCFS, SSTF, SCAN, CSCAN, LOOK, C-LOOK Scheduling File Systems: file concept, Access Mechanism, directory structure, file system structure, allocation methods (Contiguous, linked, indexed), free-space management (bit vector, linked list, grouping), Directory implementation (linear list, hash table), efficiency & performance.	8

- 1. Galvin, Silberchatz "Operating Systems Principles", Addision Wesley.
- 2. Milenekovie, "Operating System Concept", McGraw Hill.
- 3. Dietal, "An Introduction to Operating System", Addion Wesley.
- 4. Tannenbaum, "Operating System Design And Implementation", PHI.
- 5. Gary Nutt, "Operating System, A Modern Perspective", Addision Wesley

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	3	1	1	3	2	3				1		3		1	
CO2	3	3	3	2	1	1		1				2			
CO3	3	2	1	1	2	2	3		2			3			3
CO4	3	2	2	2	3	3				1		2		2	
CO5	3	1	1	1	1	2	1					2			
1. Lo	1. Low Association 2: Average Association								3: Strong Association						

Integral University, Lucknow Department of Computer Science & Engineering Subject Name: Theory of Automata & Formal Languages Subject Code: CS304 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	To demonstrate computational mathematical models for problem solving and describe howthey
	relate to formal languages.
CO 2	To analyze the relationship among language classes and grammars with the help of Chomsky
	Hierarchy.
CO 3	To apply rigorous formal mathematical model for proving different properties of grammars,
	languages and automata.
CO 4	To apply mathematical foundations, algorithmic principles and computer science theory to the
	modeling and design of computer based systems in a way that demonstrates.
CO 5	Have an overview of how the theoretical study in this course is applicable to and engineering
	application like designing the compilers.

Objective: The primary objective of this course is to introduce students to the foundations of computability theory. Other objectives include the application of mathematical techniques and logical reasoning to important problems, and to develop a strong background in reasoning about finite state automata and formal languages.

UNIT I	Machine	8
	Finite state machine, definitions, Finite automaton model, acceptance of	
	stringsandlanguagesDeterministic Finite Automata(DFA), Nondeterministic Finite	
	Automata (NFA), NFA with epsilon transition, Language of NFA, Equivalence of	
	NFA and	
	DFA, Minimization of Finite Automata, FA with output: Moore and Mealy	
	machine, Equivalence of Moore and MealyMachine, Applications and Limitation	
	of FA.	
UNIT II		8
	Chomsky Hierarchy, Regular Grammars, Unrestricted Grammars, Context	
	Sensitive Language, Regular expression (RE); Definition, Operators of regular	
	expression and their precedence, Algebraic laws for Regular expressions, Kleen's	
	Theorem, Regular expression to FA, DFA to Regular expression, Arden Theorem,	
	Non-Regular Languages, Pumping Lemma for regular Languages. Application of	
	Pumping Lemma, Closure properties of Regular Languages, Decision properties of	
	Regular Languages	
UNIT III		8

1		
	Context free grammar (CFG) and Context Free Languages (CFL): Definition, Examples, Derivation, Derivation trees, Ambiguity in Grammar, Ambiguous to	
	Unambiguous CFG, Useless symbols, Simplification of CFGs, Normal forms for	
	CFGs: CNF and GNF, Closure properties of CFLs, Decision Properties of CFLs:	
	Emptiness, Finiteness and Membership, Pumping lemma for CFLs.	
UNIT IV		8
	Push Down Automata (PDA): Description and definition, Instantaneous	
	Description, Language of PDA, Acceptance by Final state, Acceptance by	
	empty stack, Deterministic PDA, Equivalence of PDA and CFG, CFG to	
	PDA and PDA to CFG, Two stacks PDA, Non-Deterministic Push Down	
	Automata.	
TINITE VI		
UNIT V		8
	Turing machines (TM): Basic model, definition and representation, Instantaneous	
	Description, Language acceptance by TM, Variants of Turing Machine, TM as	
	Computer of Integer functions, Universal TM, Church's Thesis, Recursive and	
	recursively enumerable languages, Halting problem, Introduction to	
	Undecidability, Undecidable problems about TMs. Post correspondence problem	
	(PCP), Modified PCP, Introduction to recursive function theory	

.

References:

- $1.\ Hopcroft and Ullman, "Introduction to Automata Theory Languages and Computation", Addison Wesley.$
- 2. Mishra&Chandrasekhar, "TheoryofComputerSciences", PHI.
- 3. PeterLinz, "AnIntroductiontoFormalLanguagesandAutomata", Jones&BartlettLearning. Recommended Prerequisite CS206Co-requisite None

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO	1														
CO1	2	2	2	2		1		1		1		2	1		3
CO2	3	2	3	2	2	1						2		3	
CO3	3	3	3	2	1	2			2			2	2		3
CO4	3	2	2	2	3	3	1	2		1	1	2	2		
CO5	3	2	1	1		2				2		2		1	2
1. Lov	1. Low Association 2: Average Association 3: Strong Association														

Integral University, Lucknow Department of Computer Science & Engineering Subject Name: Software Engineering, Subject Code: CS-340 w.e.f Session 2022-23

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Identify the best suitable SDLC model for a given set of user requirements.
CO 2	Estimate the total effort, to assess and manage the potential risks involved while developing the software.
CO 3	Create a good quality SRS and design a highly cohesive and low coupled software.
CO 4	Follow the standard coding guidelines and practices and prepare best possible test cases to uncover errors.
CO 5	Work on modern CASE tools and follow the international quality standards to produce good quality software.

Objective:

- 1. Explain the basic understanding of software, its characteristics, and importance of following engineering principles to develop software.
- 2. Assess the applicability, strengths, and weaknesses of the different development life cycle models to provide real world software solutions.
- 3. To understand various processes of each phase of SDLC and make the students capable to prepare quality documentation for software development.
- 4. To develop effort estimation and risk management skills for developing software.
- 5. Study of CASE tools, Quality Assurance activities etc. for focusing on quality issues of software.

UNIT I	Introduction to Software Engineering	8										
	Types of Software, Software Characteristics, Quality of a Good Software,											
	Software Myths, Software Components, Software Crisis, Software Engineering:											
	Definition, Challenges, Software Engineering Processes, Similarity and											
	Differences from Convential Engineering Processes.											
	Software Development Life Cycle Models: Build and Fix Models, Waterfall											
	Model, Prototyping Model, RAD Model Iterative Enhancement Model,											
	Evolutionary Development Model and Spiral Model, WINWIN Spiral Model,											
	Fourth Generation Techniques.											
UNIT II	Planning a Software	8										
	Process Planning, Effort Estimation: Uncertainities in Effort Estimation, Building											
	Effort Estimation Models, A Bottom-Up Estimation Approach, COCOMO Model,											
	Project Scheduling & Staffing: Overall Scheduling, Detailed Scheduling, Team											
	Structure, Software Configuration Management(SCM): - Baselines, Version											
	Control, Change Control & Configuration Audit, Risk Management: Reactive and											
	Proactive Risk Strategies, Software Risks, Risk Analysis, Identification,											
	Projection, Assessment, Monitoring and Managing the Risk, RMMM Plan.											
UNIT III	Software Requirements Analysis and Specification	8										

	Software Requirements: Need for SRS, Requirement Process, Problem Analysis:	
	Informal & formal Approaches, Data Flow Modeling, Object Oriented Modeling,	
	Prototyping, Requirements Specifications: Characteristics of an SRS, Components	
	of SRS, Specification Language, Structure of Requirement Document: IEEE	
	Standards for SRS, Validation, Metrics.	
	Designing and Coding: Designing: Function Oriented Design: Design Principles:	
	Problem Partitioning and Hierarchy, Abstraction, Modularity, Top Down and	
	Bottom-Up Strategies, Module Level Concepts: Coupling, Cohesion; Structure	
	Design Methodology, Verification, Introduction to Object Oriented Design & User	
	Interface Design, Software Measurement Metrics: Various Size Oriented	
	Measures- Halestead's Software Science, Function Point (FP) Based Measures,	
	Cyclomatic Complexity Measures: Control Flow Graphs.	
UNIT IV	Coding & Testing	8
	Coding: Programming Principles and Guidelines: Common Coding Errors,	
	Structured Programming, Information Hiding, Programming Practices, Coding	
	Standards, Coding Process, Refactoring, Verification: Code Inspection, Static	
	Analysis, Proving Correctness, Combining Different Techniques, Metrics.	
	Testing:	
	Testing Fundamentals: Error Fault and Failure, Test Oracles, Test Cases and Test	
	Criteria, Test Case Execution and Analysis, Unit Testing, Integration Testing: :	
	Top Down and Bottom up, Acceptance Testing: Alpha and Beta Testing.,	
	Regression Testing, functional and non-functional testing. Testing Techniques:	
	White Box: Logic Coverage, Path Coverage, Loop Coverage, Data Flow Testing.	
	Black Box Testing: Boundary Value Analysis, Equivalence Class Testing, state	
	Table Based Testing, Decision Table Based Testing.	
UNIT V	Computer Aided Software Engineering (CASE)	8
	CASE Tools, Scope, Benefits of CASE Tool, support in Software Life Cycle,	
	Architecture of CASE Environment, Types of CASE Tools, Software Reliability	
	and Quality Management: -Software Quality Management: Quality Concepts,	
	Software Quality Assurance, Software Reviews, Formal Technical Reviews, and	
	Statistical Quality Assurance. Software Reliability, ISO 9000 Quality Standards,	
	CMM Levels.	

- 1. Software Engineering: A Practitioner's Approach by Roger S. Pressman, McGraw-Hill International edition.
- 2. An Integrated Approach to Software Engineering, by Pankaj Jalote, Narosa Publishing House.
- 3. Software Engineering by K.K. Agarwal.
- 4. Software Engineering by Ian Sommerville, Addison-Wesley.
- 5. Fundamentals of Software Engineering by Rajib Mall, PHI.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
PSO																
CO																
CO1	2	3	2	2		1	1	2	2	3	2	1	3			
CO2	3	3	2	2	1		1		2	1	3	1		2	1	
CO3	3	3	3	2					3	3		2		3		
CO4	3	2	2	2	1	3		2	3	3		2	2	1		
CO5	3	1	3	2	3	2	1	2	2	2	2	2			1	1
1. Low Association 2: Average Association 3: Stro													Associ	ation		

Integral University, Lucknow Department of Computer Science & Engineering B.TECH. CSE

Subject Name: Cloud Computing, Subject Code: CS-334 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C	
None	None	3	1	0	4	

CO1	Explain the various paradigm of cloud computing and computing techniques.
CO2	Articulate the concepts ,key technologies, strength and limitation of cloud computing and possible application
CO3	Identify the architecture and infrastructure of cloud computing including SaaS, PaaS,Iaas, public cloud, private cloud and hybrid cloud.
CO4	Interpret various data, scalability and cloud services to acquire efficient database for cloud storage.
CO5	Describe the appropriate cloud computing solutions and recommendations according to application used.

Objective:

- 1.To study the the various paradigm of cloud computing and computing techniques.
- 2.To study the concepts ,key technologies, strength and limitation of cloud computing and possible application
- 3.To understand the architecture and infrastructure of cloud computing including SaaS, PaaS,Iaas, public cloud, private cloud and hybrid cloud.
- 4.To study Interpretation of various data, scalability and cloud services to acquire efficient database for cloud storage.

UNIT I		8									
	Introduction: Historical development, Vision of Cloud Computing,										
	Characteristics of cloud computing as per NIST, Cloud										
	computing reference model, Cloud computing environments, Cloud services										
	requirements, Cloud and dynamic										
	infrastructure.										
	Overview of cloud applications: ECG Analysis in the cloud, Protein structure										
	prediction, Gene Expression Data Analysis										
	,Satellite Image Processing, CRM and ERP ,Social networking.										
UNIT II		8									

	Cloud Computing Architecture: Cloud Reference Model, Types of Clouds, Cloud Interoperability & Standards, Scalability and Fault Tolerance; Cloud Solutions: Cloud Ecosystem, Cloud Business Process Management, Cloud Service Management. Cloud Offerings: Cloud Analytics, Virtual Desktop Infrastructure.	
UNIT III	Cloud Management & Virtualization Technology: Resiliency, Provisioning, Asset management, Concepts of Map reduce, Cloud Governance, High Availability and Disaster Recovery. Virtualization: Fundamental concepts of compute ,storage, networking, desktop and application virtualization .Virtualization benefits, server virtualization, Block and file level storage virtualization Hypervisor management software, Infrastructure Requirements, Virtual LAN(VLAN) and Virtual SAN(VSAN) and their benefits.	8
UNIT IV	Cloud Security: Cloud Information security fundamentals, Cloud security services, Design principles, Secure Cloud Software Requirements, Policy Implementation, Cloud Computing Security Challenges, Virtualization security Management, Cloud Computing Security Architecture.	8
UNIT V	UNIT 5 Market Based Management of Clouds, Federated Clouds/Inter Cloud: Characterization & Definition, Cloud Federation Stack, Third Party Cloud Services. Case study: Google App Engine, Microsoft Azure, Hadoop, Amazon.	8

- 1. Buyya, Selvi," Mastering Cloud Computing ",TMH Pub.
- 2. Kumar Saurabh, "Cloud Computing", Wiley Pub.
- 3. Krutz, Vines, "Cloud Security", Wiley Pub.
- 4. Velte, "Cloud Computing- A Practical Approach", TMH Pub.
- 5. Sosinsky, "Cloud Computing", Wiley Pub.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO]														
CO1	3	3	_	_	_	_	_	_	_	_	_	_	_	_	3
CO2	3	3	_	_	_	_	_	_	_	_	_	_	_	_	3
CO3	3	3	3	3	_	_	_	_	_	_	_	_	2	3	3
CO4	3	3	3	3	_	_	_	_	_	_	_	_	2	3	3
CO5	3	3	3	3	_	_	_	_	_	_	_	_	2	3	3

Integral University, Lucknow Department of Bioengineering B.TECH. COMPUTER SCIENCE & ENGG

Subject Name: Introduction to Internet of Things, Subject Code: CS341 w.e.fSession 2021-22

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

COURSE OUTCOME (CO)	DESCRIPTION
CO1	Understand the concepts of Internet of Things and can able to build IoT
	applications.
CO2	Understand IoT sensors and technological challenges faced by IoT devices, with a
	focus on wireless, energy, power, and sensing modules
CO3	Student must be able to understand the specialized aspects of IoT Devices
CO4	Elaborate the need for Data Analytics and Security in IoT
CO5	Explore and learn about Internet of Things with the help of preparing projects
	designed for Raspberry Pi

OBJECTIVES:

- 1. To understand the concepts of Internet of Things.
- 2. To introduce the concept of M2M (machine to machine) with necessary protocols
- 3. To illustrate diverse methods of deploying smart objects and connect them to network.
- 4. To introduce the Raspberry PI platform, that is widely used in IoT applications
- 5. To Infer the role of Data Analytics and Security in IoT

UNIT I	Introduction to IoT Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Comparing IoT Architectures, Functional blocks of IoT, Communication models & APIs, IoT Challenges.	7
UNIT II	Communication Protocols Wireless medium access issues, MAC protocol survey, Survey routing	7
	protocols, Sensors, Actuators and Smart Objects, Sensor Networks, Connecting Smart Objects, IoT AccessTechnologies.	
UNIT III	IoT and M2M	8

	Software defined networks, network function virtualization, difference between SDNand NFV for IoT, Basics of IoT System Management with NETCOZF, YANG-NETCONF, YANG, SNMPNETOPEER								
UNIT IV	NIT IV IoT Physical Devices and Endpoints								
	Introduction to Arduino and Raspberry Pi- Installation, Interfaces (serial, SPI, I2C),								
	Programming - Python program with Raspberry PI focusing on interfacing								
	externalgadgets, controlling output, reading input from pins.								
UNIT V	IoT Physical Servers and Advanced Topics	8							
	Introduction to Cloud Storage models and communication APIs, Web server – Web								
	server for IoT, Cloud for IoT, An Introduction to Data Analytics for IoT,Big Data								
	Analytics Tools and Technology, Securing IoT, Common Challenges in OT								
	Security,								

- 1. Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill Education, 2017. (ISBN: 978-9352605224)
- 2. Internet of Things A Hands-on Approach, ArshdeepBahga and Vijay Madisetti, Universities Press, 2015, ISBN: 978817371954
- 3. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry,"IoT

↓CO\PO\PSO →	PO1: Ability to apply knowledge of science, computing and	PO2: Ability to analyze the computer engineering problems.	PO3: Ability to develop and design solutions based on	PO4: Ability to handle complex and interdisciplinary	PO5: Ability to apply state of the art tools and techniques in	PO6: Ability of being aware about the existing social	PO7: Ability to provide environment friendly and	PO8: Ability to understand their professional and ethical	PO9: Ability to work as an individual as well as in teams.	PO10: Ability to communicate with the stake holders by	PO11: Ability to manage the day to day challenges by optimizing	PO12: Ability to engage and encourage themselves in	PSOI	PSO2	PSO3	PSO4
CO1	1	2		3	1		3	2				1	2	1	2	2
CO2			2	3	3				2	3	1	1	1	1	3	2
CO3	1	3			2	1		2	3				1	2	1	2
CO4	·		1	2			3			3	2	1	2	3	2	1
CO5:	1	2	3		1	2		3					2	1	1	3
3: Strong Associat	tion, 2:	Avera	age Ass	sociatio	n, 1: I	low As	sociati	on								

Т	Title of the Course: Digital Image Processing L T												
1		Code: CS312	3	1	0								
	CO	After the completing the course the student sh	ould b	e able	;								
		to											
	CO1	Explain basic image processing techniques for solving real problems											
	CO2	Applying processing techniques for solving problems in Computer Science											
	CO3	Evaluate algorithms for higher level image processing	g.		4								
	CO4	Develop understanding for object registration and recognition											
	CO5	Develop an application using existing image processing algorithms											

PO						PO						PSO			
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3	PS O4
CO 1	2	1	3	1	1	3	1	2	1	1	2	3	2		
CO 2	3	2	3	2	1	1			2		2	1	3		
CO 3	2	2	1	1	2	2	3		1		3			3	
CO 4	3	2	2	2	3	3					2			3	
CO 5	3	1	1	1	1	2	1				2				3
	1	. Low	Asso	ciatio	n 2	2: Ave	rage	Assoc	iation	\ \ 	3: Str	ong As	ssociat	ion	

COURSE: Visual Programming Lab

COURSE CODE: CS343

COURSE CREDIT: 1

COURSE OBJECTIVES:

This course introduces computer programming using the Visual BASIC programming language with object-oriented programming principles. Emphasis is on event-driven programming methods, including creating and manipulating objects, classes, and using object-oriented tools.

COURSE OUTCOMES (CO):

After completion of the course, a student will be

CO 1	Design, create, build, and debug Visual Basicapplications.						
CO 2	Explore Visual Basic's Integrated Development Environment (IDE).						
CO 3	Write and apply decision structures for determining different operations						
CO 4	Write and apply procedures, sub-procedures, and functions to create manageable code.						
CO 5	Write Visual Basic programs using object-oriented programming techniques including classes, objects, methods, instance variables, composition, and inheritance, and polymorphism.						

CO-PO MAPPING:

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	2	3	2		3		3						2	1	3
CO2	1	2	2	1	3		1						1	3	1
CO3	3	2	2	2			2						3	1	2
CO4	2	1	3	1			2						1	2	1
CO5	1	2	1				3						2	1	2
1. Low	1. Low Association 2				age A	ssocia	tion	3	: Stro	ng Ass	ociatio	n			

COURSE: OPEN SOURCE SOFTWARE TECHNOLOGIES LAB

COURSE CODE CS310

COURSE CREDIT: 1

re-requisite	Co-requisite	L	Т	P	C
None	None	0	0	2	1

CO 1	Explain common open source licenses and the impact of choosing a license to explain open-source
	project structure and how to successfully set up a project
CO 2	Competent with Linux in their systems Install different useful packages in Linux using RPM can
	Schedule task automatically and run administrative commands.
CO 3	Able to understand web server easily how to store, process and deliver web pages to the users. How
	intercommunication is done using by variety of available Protocols.
CO 4	Analyze the existing design of a database schema and apply concepts of normalization to design an
	optimal database by formulating complex queries in MySQL.
CO 5	Design and develop Client Server applications using open source scripting language. Able how to
	design GUI Applications in open source scripting language to evaluate different processes.

COURSE OBJECTIVES:

- To motivate students to use open source operating systems.
- To teach students to setup their own Linux server .
- To teach students to setup their own web server and commands
- To learn using MySql as an open source database system.
- To learn PHP as open source development programming language.

List of Experiments:

Overview of FOSS & Basic Command interface on Linux
Usage of Basic Linux Commands, File and Folder Management Commands
Learning Network related Command and Administrative Commands
Learning Vi Editor & its Modes And GUI Tools
Learning Shell Script, A Shell Script to demonstrate various control Constructs
A Script to check for a file and directory existence in the file system
A Script to execute different command to demonstrate Switch

A Script to handle command line argument and other Special symbols
Learn how to Compile, Debug & Execute C, C++ & Java Programming Codes without IDEs.
Learning about LAMP STACK its Installation And Configuration on Linux (Ubuntu) and Perform Post
Creating simple Database in MySql Server performing queries
Learning A Deep Dive in MySql Server Using PhpMyAdmin Tool for Administering and Monitoring the
Basics of PHP Web Programming, PHP code to demonstrate the usage of Variable, String, Array and
Some Deep Dive in PHP Programming:- A PHP Program to implement customized functions and other
A PHP Program to demonstrate the use of PHP mail ()
Learning Database Connectivity between PHP and MySql, Create a login Control for a web page to
 A Mini Project to create a website for University Utilities

CO-PO MAPPING:

RO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	1					2			3	3	2	
CO2	2	3	3	2					2			1	2	2	
CO3	3	3	2	2		2	3		2			1	1	2	
CO4	2	2	3	2	1	2			2			1	2	1	
CO5	2	2	2	2					2			1			3
	1. Low Association 2: Average Association 3: Strong Association														

COURSE: Designing and Analysis of Algorithm Lab

COURSE CODE: CS 302

COURSE CREDIT: 1

COURSE OBJECTIVES:

- To learn the basic concepts of divide and conquers with help of various examples.
- To be able to develop logics which help to find the optimal solution.
- To learn the Dynamic approach to through various problems.
- To learn the uses of augmented data structure and their implementation.
- Learning Backtracking and its implementation.

COURSE OUTCOMES (CO): After completion of the course, a student will be

CO 1	Able to understand the basic concepts of Divide and conquer their implementation.
CO 2	Able to understand and develop solution to optimization problem(Greedy algorithm)
CO 3	Able to analyze and develop dynamic solution and implementation
CO 4	Develop understanding of Backtracking problems and their implementation
CO 5	Understanding and develop the logic to implementation of different augmenting data structures (RB Tree)

List of Experiments:

Experiment No.	Program
	Introduction
1	Implement Merge Sort
2	Implement Quick Sort(Divide & Conquer)
3	Implement Heap Sort
4	Implement Knapsack problem (Greedy ALGO.)
5	Implement of directed and undirected graph
6	Implement Shortest path by Dijkstra Algorithm
7	Implement 8- Queen problem(Back Tracking)
8	Implement Minimal spanning tree by
8.1	Kruskal's Algorithm
8.2	Prim's Algorithm
9	Implement Pattern Matching

10	Implement Binary Search Tree
11	Insert a element in Red Black Tree

CO-PO MAPPING:

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO]														
CO1	1	2	2		3	1	3	1					2	1	1
CO2	2	1	3	2	1	2	3					1	2	1	1
CO3	1	2	2	2			3	2				2	2	1	1
CO4		2	2	2	1	2	3	2					2	1	1
CO5	1	2	1		1		3					1	2	1	1
1. Low	1. Low Association 2: Average Association							3	3: Stro	ng Ass	ociatio	n			

Integral University, Lucknow Department of Computer Science & Engineering Subject Name: DATA COMPRESSION Subject Code: CS342

w.e.i	Session	ZUZU-Z1	

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Understand the importance of compressions, and different compression models
CO 2	Solve the various problems based on lossless compression approach such as Huffman, adaptive Huffman models
CO 3	Solve problems using arithmetic and dictionary based compression techniques.
CO 4	Apply partial prediction matching, and learn to transformation of source basedon Transform algorithms
CO 5	Represent the various dynamic model in the form of structured vector representation

Objective:

- Basic knowledge of Data compression
- Types of data compression
- Various techniques o f Data compression
- Application of data compression

UNIT I	Introduction	8
	Compression Techniques: Loss Less Compression, Lossy Compression, Measures of Performance, Modeling and Coding. Mathematical Preliminaries for Lossless Compression: A Brief Introduction to Information Theory: - Models:	
	Physical Models, Probability Models, Markov Models, Composite Source Model, Coding:-Uniquely Decodable Codes, Prefix Codes	
UNIT II	Huffman Coding	8
	The Huffman Coding Algorithm: Minimum Variance Huffman Codes, Adaptive Huffman Coding: Update procedure, Encoding procedure, decoding procedure. Golomb Codes, Rice Codes, Tunstall codes. Application of Huffman Coding. Text compression, Audio Compression.	
UNIT III	Arithmetic Coding	8
	Coding a Sequence, Generating a Binary Code, Comparison of Binary and Huffman Coding, Applications: Bi-Level Image Compression-JBIG and JBIG2 Standards. Dictionary Techniques: Introduction, Static Dictionary: - Diagram Coding, Adaptive Dictionary: The LZ77 Approach, The LZ78 Approach Applications. Image Compression: The Graphics Interchange Format (GIF), Compression over Modem.	
UNIT IV	Prediction with Partial Match	8

	The Basic Algorithm, The ESCAPE SYMBOL, Length of Context, The Exclusion Principle, The Burrows-Wheeler Transform, Move-to- Front Coding, CALIC, JPEG-LS, Multi-resolution Approaches, Facsimile Encoding, Dynamic Markov Compression.	
UNIT V	Quantization	8
	Introduction of Scalar and Vector Quantization, Advantages of Vector	
	Quantization Over Scalar Quantization, The Linde-Buzo-Gray Algorithm,	
	Tree Structured Vector Quantizes, Structured Vector Quantizes.	

- 1. Introduction to Data Compression, Second Edition, Khalid Sayood, The Morgan Kaufmann Series
- 2. Data Compression: The Complete Reference 4th Edition by David Salomon, Springer
- 3. Text Compression1st Edition by Timothy C. Bell Prentice Hall
- 4. Elements of Data Compression, Drozdek, Cengage Learning

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	3	3	2	2	2								3	2	2
CO2	2	2	2	2	2								2	2	1
CO3	2	2	1	1	2								3	2	1
CO4	3	2	1	2	1	2	1						3	2	1
CO5	2	2	3	2	2	1	1	1					3	2	2
	1. Low Association 2: Average Association 3: Strong Association														

Integral University, Lucknow Department of Computer Science & Engineering Subject Name: Microprocessor and its Applications, Subject CodeCS-313 w.e.fSession 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Understand the basic architecture of 8085 and 8086.
CO 2	Impart the knowledge about the instruction set.
CO 3	Understand the basic idea about the data transfer schemes and its applications
CO 4	Develop skill in simple program writing for INTEL 8085 and INTEL 8086.
CO 5	Understand advance microprocessor, microcontroller and Embedded System.

Objective: This course deals with the systematic study of the Architecture and programming issues of 8 bit 8085-microprocessor and interfacing with other peripheral ICs and co-processor. In addition, a 16-bit microprocessors and other chips (8255, 8251, 8253 and 8257) are introduced. The aim of this course is to give the students basic knowledge of the microprocessors (8085 and 8086) needed to develop the systems using it.

UNIT I	Category of Memory, Microprocessor, Microcontroller, Buses, machine Language, Assembly Language, High Level Language, Assembly Language Program Development Tool. 8085 Microprocessor: Architecture, Pin diagram, Instruction Type, Instruction Cycle, Timing Diagram, Addressing Modes, Instruction Set. Assembly Programming based on 8085, Interrupt and Interrupt Service Routine.	8
UNIT II	8086 Microprocessor: Architecture, Pin Diagram, Timing Diagram, Addressing Modes, Instruction Set, Instruction Templates, Assembly Language Programming: Based on Procedure, Macros, Number conversion, String operation.	8
UNIT III	Interfacing with Peripheral Devices and Memory: Types of Transmission, 8257(DMA), 8255(PPI), Serial Data Transfer (USART 8251), Keyboard- Display Controller (8279), Priority Interrupt Controller (8259)	8
UNIT IV	Interfacing with Timers and its Applications: Programmable Interval Timer/Counter (8253/8254): Introduction, Modes, Interfacing of 8253, Applications, ADC: Introduction, ADC Converters, ADC IC (0808/0809), Interfacing and Application of ADC.	8
UNIT V	Advanced Microprocessors and Micro-Controller: Introduction to Intel 80186, 80286, 80386 and 80486 Microprocessor. Introduction to Embedded System and Microcontrollers, 8051 Micro-controller: Introduction, Architecture.	8

References:

- 1. R.S. Gaonkar: "Microprocessor architecture, Programming and Applications with 8085/8080", Penram Publication.
- 2. B.Ram : "Fundamental of Microprocessor and Microcomputer", DhanpatRai Publication, 4th edition.
- 3. R. Singh and B.P. Singh: "Microprocessor Interfacing and its application", New Age International Publishers, 2nd Edition.
- 4. D.V. Hall: "Microprocessor Interfacing", TMH (Revised 2nd Edition).
- 5. R. Singh and B.P. Singh: "Advanced Microprocessor and Micro-controllers", New Age International Publishers, 2nd Edition

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	2	3	1	2	1	1			1	1	1	2	1	2	2
CO2	2	3	1	1	1	2	3	2		2			3	2	
CO3	1	2	2	2					1	1	1	2	2	1	2
CO4	1	2	2	3	4	1				2		3	2		
CO5	1	1	2	3	5			3	1	2	1	2	1	2	2
1. Low Association 2: Average Association 3: Strong Association															

Integral University, Lucknow Department of Computer Science & Engineering Subject Name: COMPILER DESIGN, Subject Code: CS 315 w.e.fSession 2020-21

Pre-requisite	Co-requisite	L	T	P	C
Theory of Automata and	None	3	1	0	4
formal Languages (CS 304					

CO 1	Know about the concepts of a preprocessor, translation rule ,cross compiler, assembler loader and linker.
CO 2	To know about the basic principles of the compiler, and its constituent parts, algorithms, and data structures required to be used in the compiler.
CO 3	Know about the conceptsof the function and complexity of modern compilers.
CO 4	Know about the concepts of code generation algorithms to get the machine code for the optimized code
CO 5	Know about the concept flow graph, machine-dependent, and machine-independent optimization, intermediate code ,.

Objective: The course curriculum helps to understand the concepts of compiler and phases, various translation schemes, the complexity of the input program, machine dependent code and machine independent code, optimization theory, syntax directed translation scheme of the input jobs, role and responsibility of pre-processor in compiler designing and compiling of the input jobs.

UNIT I	Introduction to Compiler, Phases and Passes, Bootstrapping, Finite State Machines and Regular Expressions and their Applications to Lexical Analysis, Implementation of Lexical Analyzers, Lexicalanalyzer Generator, LEX-compiler, Formal Grammars and their Application to Syntax Analysis, BNF Notation, Ambiguity, YACC.	8
UNIT II	The Syntactic Specification of Programming Languages: Context Free Grammars, Derivation and Parse Trees, Capabilities of CFG. Basic Parsing Techniques: Parsers, Top Down Parsing, Predictive Parsers, LL(1), Shift Reduce Parsing, Operator Precedence Parsing, Elimination of left recursion	8
UNIT III	Automatic Construction of Efficient Parsers: LR Parsers, the Canonical Collection of LR(O) Items, Constructing SLR Parsing Tables, Constructing Canonical LR Parsing Tables, Constructing LALR Parsing Tables, using Ambiguous Grammars, an Automatic Parser Generator, Implementation of LR Parsing Tables, Constructing LALR Sets of Items.	8

UNIT IV	Syntax-Directed Translation: Syntax-Directed Translation Schemes, Implementation of Syntax-Directed Translators, Intermediate Code, Postfix Notation, Parse Trees & Syntax Trees, Three Address Code, Quadruple & Triples, Translation of Assignment Statements, Boolean Expressions, Statements that Alter the Flow of Control, Postfix Translation, Translation with a Top Down Parser. More About Translation: Array References in Arithmetic Expressions, Procedures Call, Declarations, Case Statements.	8
UNIT V	Symbol Tables: Data Structure for Symbols Tables, Representing Scope Information. Run-Time Administration: Implementation of Simple Stack Allocation Scheme, Storage Allocation in Block Structured Language. Introduction to Code Optimization: Loop Optimization, the DAG Representation of Basic Blocks, Value Numbers and Algebraic Laws, Global Data-Flow Analysis. Introduction to Code Generation.	8

1. Aho, Sethi & Ullman, "Compiler Design", Addision Wesley.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO]														
CO1	2	3	1	2	1	1			1	1	1	2	1	2	2
CO2	2	3	1	1	1	2	3	2		2			3	2	
CO3	1	2	2	2					1	1	1	2	2	1	2
CO4	1	2	2	3	4	1				2		3	2		
CO5	1	1	2	3	5			3	1	2	1	2	1	2	2
1. Low Association 2: Average Association 3: Strong Association						ion					·				

Integral University, Lucknow Department of Computer Science & Engineering Subject Name: Computer Networks, Subject Code: CS-305 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

CO 1	A.	Students shall be able to understand the basic concepts of communication process including the key aspects of networking such as hardware components, communication principles, and performance criteria of a Network.
	В.	Demonstrate the ability to recognize and differentiate various transmission media, switching techniques and to identify limitations of typical communication systems, physical structures, network models, and internetworking.
	C.	Students shall be able to compare and contrast Open System Interconnect (OSI) and the TCP/IP Model for its worth, need and operability.
CO 2	A.	Demonstrate clear understanding & Ability to utilize the knowledge of error handling techniques to detect and remove errors from data packets.
	B.	Analyze and distinguish various flow control techniques at Data Link layer and formulate concrete logic to resolve flow control issues in network.
	C.	Comprehend and apply the knowledge of access control mechanism for secure and smooth functioning of network.
CO 3		Able to demonstrate clear understanding of Routing mechanism and IP addressing schemes. Able to understand and apply the knowledge IP addressing schemes to identify, deduce and design network structure based on the concept of sub-netting/super-netting using modern simulation tools in lab such as Packet-Tracer .
	C.	Identify and Apply knowledge of routing approaches and schemes to identify and develop appropriate routing algorithms as solution by analyzing to problem statement in the purview of inter-networking using modern tools in lab such as Net-Sim.
CO 4	A.	Demonstrate the clear understanding of Transmission Control Protocol and Congestion control techniques.
	B.	Illustratively explain the concept of Connectionless and Connection oriented services and unambiguously differentiate and identify the best preferred service for a given problem statement.
	C.	Able to apply the knowledge of flow control and congestion control techniques to evaluate the performance of network using modern tools in Lab such as Network Simulator
CO 5	A.	Students shall be able to recognize, evaluate and explain various reasons and causes affecting Network performance.
	В.	Students shall be able to analyze and evaluate to Quality of Service in networking and apply knowledge to improve the same.
	C.	Demonstrate the ability to identify various protocols and its internal functioning which are used at Application layer. Students will have in depth knowledge of networking-process, issues, challenges and various approaches to resolve them thru classical networking techniques and modern tools like NS2.

Objective: The objective of this curriculum is to inculcate the conceptual & practical knowledge of computer networking right from "Basic" to a "Higher-Level" understanding of the subject. It helps to acquire the know-how of designing & organization computer network, understanding the communication process and use of networking devices. The course objectives include learning Network Models, its working principles and network protocols

involved therein. It also helps students to gain the practical knowledge of designing efficient networks, its implementation, monitoring and troubleshooting of computer network.

	Basics of Network & Physical Layer	
UNIT I	Data communication, Components, Data representation, Data flow. Performance criteria, topologies, category: LAN. MAN & WAN. OSI layered architecture, TCP/IP protocol suite. Physical Layer: Transmission Media Guided media, Twisted pair, coaxial cable, fiber optics. Unguided media: radio waves, microwaves & infrared waves. Circuit switching network, Packet Network & Virtual Circuit. Connecting Devices: Repeater, Hub, Switch, Bridge, Router and Gateway.	8
	Data Link Layer	
UNIT II	Error Handling: types of error, Block Coding, Hamming distance, Linear Block Codes, Cyclic Codes. Flow control: Stop & wait, Sliding Window Protocols: Designing and functioning of Go-Back-N, Selective Repeat method. Random Access protocol ALOHA, CSMA, CSMA/CD. Channelization: Frequency Division Multiple Access, Time Division Multiple Access, Code Division Multiple Access. Overview of Fast Ethernet: FDDI.	7
	Network Layer	
UNIT III	IPv4 Addressing, Classfull addressing, net-id, hosted, mask, subnet. Classless addressing, subnetting using classless addressing. Datagram formats for IPv4 and IPv6 addresses. Address mapping protocols: ARP and RARP. Packet delivery and packet forwarding. Unicast routing: Distance vector routing-RIP and Link state routing-OSPF. Path vector routing-BGP	10
	Transport Layer	
UNIT IV	Process to process delivery, Connectionless versus connection oriented services. User data gram protocol, frame format of datagram. Transmission control protocol: TCP services, TCP features, Segment format. Congestion Control: Open loop techniques (Retransmission, window and acknowledgement policies.), Closed loop techniques (Back pressure and choke packet).	8
	Quality of Service	
UNIT V	Flow characteristics: Reliability, Delay, Jitter and bandwidth. Traffic Scheduling: FIFO technique, Weighted fair queuing. Traffic shaping: Leaky bucket and token bucket. Application Layer: Domain name System: Name space, Domain Name space, Distribution of domain name space. DNS in internet, Resolution. Electronic Mail: SMTP, IMAP, POP3. File Transfer: FTP. Telnet, WWW: architecture, Client, URL, Cookies.	8

References:

- Forouzen, "Data Communication and Networking", TMH
 A.S.Tanenbaum, "Computer Networks", 3rd Edition, Prentice Hall India, 1997
- 3. W. Stallings, "Data and Computer Communication", Macmillan Press, 1989.

PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
СО															
CO1	2	2	1	1	1	1	2	1	1	1	1	2	3	1	3
CO2	3	3	3	3	3	1			1	1	1	2	3	2	3
CO3	3	3			3	1	1	2	1	1	2	2	1	3	2
CO4	3	2	2	2	2	1	1		2	1	1				1
CO5	2	3	2	2	2	2	2	2	2	1	2	2	3	2	2
1. Low Association 2: Average Association 3: Strong Association															

Integral University, Lucknow Department of Computer Science & Engineering Subject Name: Real Time System, Subject Code: CS-320

w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

CO 1	Apply the knowledge of operating system concepts to understand real time system concepts like tasks and scheduling.
CO 2	Analyze the various parameters related to the different types of scheduling in single processor and multiprocessor environments.
CO 3	The basic concepts of real time databases and their applications.
CO 4	Apply the basic concepts of fault tolerance and clocks to design an effective real time system.
CO 5	Identify the various protocols for effective resource sharing.

UNIT I	Introduction	6					
	Introduction to Real Time Systems, Structure of Real Time System, Various						
	Classification of Real Time Systems, Embedded System, Characterizing Real Time						
	System & Task, Various Issues in Real Time System						
UNIT II	Task Assignment & Scheduling	10					
	Classical Uniprocessor Scheduling Algo- Rate Monotonic, EDF. Uniprocessor Scheduling of IRIS Tasks, Identical and Nononidentical Linear & Concave Reward Function, 0/1 Reward Function. Task Assignment Algorithms- Utilization Balancing, A Next-Fit Algorithm for RM Scheduling, A Myopic Offline Scheduling FAB Algorithm & Buddy Strategy						
UNIT III	Real Time Database						
	Real Time vs. General purpose Database, Main Memory database,						
	Concurrency Control Issues, Real Time OS- Threads and Tasks, Kernel, Case Study of QNX, VRTX, Vx Works.						
UNIT IV	Fault Tolerance Techniques	8					
	Introduction Fault, Fault Detection and Error Containment, Redundancy Data Diversity, Reversal Checks, Malicious & Integrated Failure Handling. Clock Synchronization: Introduction Clocks, A Nonfault Tolerant Synchronization Algorithms, Impact of Fault, Fault Tolerant Synchronization in H/Wand S/W						

UNIT V	Real Time Communication	8
	Introduction, N/W Topologies, Protocols: Internet & Resource Reservation Protocols, Real Time Protocol, Contention-Based Protocol	

- 1. C.M. Krishna & Shin, "Real Time Systems", Mc Graw Hill 1985.
- 2. Jane W.S. LIU, "Real Time Systems", Pearson Education".
- 3. Levi & Agarwal, "Real Time System", McGraw Hill.

PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
СО															
CO1	3	2	1	1	1	1	2	1	1	1	1	2	3	1	3
CO2	3	2	3	3	3	1			1	1	1	2	3	2	3
CO3	3	3			3	1	1	2	1	1	2	2	1	3	2
CO4	3	2	2		2	1	1		2	1	1				1
CO5	2	3	2	2	2	2	3		2	1	2	2	3	2	2

Integral University, B.TECH. COMPUTER SCIENCE & ENGG

Subject Name: Concepts inAdvanced Database System, Subject Code: CS346 w.e.f Session 2018-19

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

COURSE OUTCOME (CO)	DESCRIPTION
CO1	Have knowledge about advance SQL queries and its applications.
CO2	Have knowledge and understanding of distributed database.
CO3	Have knowledge about database tuning and Explain basic issues related to Database security.
CO4	HaveknowledgeaboutPL/SQLanditsimplementationinvariousqueryprocess.
CO5	Have knowledge and understanding of Advanced data bases and data warehouse.

OBJECTIVES:

- To give the knowledge of Advance SQL Queries, which help the student to learn the working of Internal processing of DBMS, when the query imputed.
- To give knowledge and understandings of Distributed database .
- To give the knowledge about database tuning and Explain basic issues of Database security.
- To give the knowledge of database tuning and database security.
- To give the knowledge about data warehouse, connectivity and different types of emerging databases.

UNIT I	Query Processing and Optimization	8					
	Clustering & Indexing, Query Processing, Estimations for Query						
	Processing Cost Algorithms for executing selection Operations, Algorithms						
	for executing Join Operations, Algorithm for executing Project Operations.						
	Query Optimization: Heuristics for Query Optimizations, Query Evaluation						
	Plans, Pipelined Evaluations, System Catalogue in RDBMS						
UNIT II	Object Oriented databases	8					
	Database Tuning: Database Workloads, Tuning Decisions, DBMS						
	Benchmarks, Multiple Attribute Search Keys, Extended Relational Model						
	& Object Oriented Database System: Requirement, Properties, Structured						
	Types, Object Identity, Containment, and Class Hierarchy, Logic Based						
	Data Model, and Nested Relational model.						
UNIT III	Distributed databases	8					
	Distributed Database System: Structure of Distributed Database, Data						
	Fragmentation, Data Model, Query Processing, Semi Join, Parallel &						
	Pipeline Join, Concurrency Control in Distributed Database System,						

	Recovery in Distributed Database System, Distributed Deadlock Detection	
	and Resolution, Commit Protocols	
UNIT IV	Database Security	8
	Database Securities: Database Security, Access Control and Grant &	
	Revoke on Views and Integrity Constraints, Mandatory & Discretionary	
	Access Control, Role of DBA, Security in Statistical Databases	
UNIT V	Enhanced databases	8
	Enhanced Data Model for Advanced Applications: Database Operating	
	System, Introduction to Temporal Database Concepts, Introduction to	
	Spatial and Multimedia Databases, Introduction to Data Mining,	
	Introduction to Active Database System & Deductive Databases, Database	
	Machines, Web Databases.	

- 6. Majumdar & Bhattacharya, "Database Management System", TMH.
- 7. Korth, Silberchatz, Sudarshan, "Database Concepts", Addison Wesley
- 8. Elmastri, Navathe, "Fundamentals of Database Systems", Addison Wesley
- 9. Date C.J., "An Introduction to Database System", Addison Wesley.
- 10. Ramakrishnan, Hadzilacous, Goodman, "Concurrency Control & Recovery", Addiosn Wesley.
- 11. Ceri & Palgatti, "Distributed Databases", McGraw Hill.

↓CO\PO\PSO →	PO1: Ability to apply knowledge of science, computing and		PO3: Ability to develop and design solutions based on	PO4: Ability to handle complex and interdisciplinary	PO5: Ability to apply state of the art tools and techniques in	PO6: Ability of being aware about the existing social	PO7: Ability to provide environment friendly and	PO8: Ability to understand their professional and ethical	PO9: Ability to work as an individual as well as in teams.	PO10: Ability to communicate with the stake holders by	PO11: Ability to manage the day to day challenges by optimizing	PO12: Ability to engage and encourage themselves in	PSOI	PSO2	PSO3	PSO4
CO1	1	2		1	1		3	2				1	2	1	2	2
CO2			3	1	3				2	3	3	1	1	2	3	2
CO3	1	1			2	1		3	3				1	1	1	2
CO4			1	2			1			3	2	1	2	1	2	1
CO5:	1	2	3		1	2		3					2	2	1	3
3: Strong Associat	3: Strong Association, 2: Average Association, 1: Low Association															

Integral University, Lucknow B.TECH. COMPUTER SCIENCE & ENGG

Subject Name: Software Project & Quality Management, Subject Code: CS-311

w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	Т	Р	С
Software Engineering	None	3	1	0	4

CO 1	Analyze the systematically stepwise project planning.
CO 2	Have knowledge of strategic program management, analysis of technical assessment of projects and study and analysis of different Cost-Benefit Evaluation Techniques.
	projects and study and analysis of different Cost-Benefit Evaluation Techniques.
CO 3	Apply, analyze and compare effort estimation and different network planning models.
CO 4	Evaluation and analysis of different resources and Critical Path, monitoring and control, Prioritizing monitoring and change control.
CO 5	Compare and analyze modern project management, contract management, ISO Standards, CMM, Six Sigma Approach.

Objective

-----.

UNIT I	Introduction	8
	Overview of Software Project Planning Software Project, Categorization of	
	Software Project, Introduction to Stepwise Project Planning: Identify Project	
	Scope and objectives, Identify Project Infrastructure, Project Products and	
	Activities, Activity risks, Resource Allocation, Project Plan Execution	
UNIT II		8
	Project Evaluation: Strategic Program Management, Technical Assessment, Cost	
	Benefit Analysis, Cash Flow Forecasting, Cost-Benefit Evaluation Techniques:	
	Net profit, Payback Period, Return on Investment, Net Present Value, Internal Rate	
	of Return, Risk Evaluation, Selection of Technologies, overview of software development models	
UNIT III		8
	Software Effort Estimation an Overview, Project Schedules, Network Planning	
	Models, Activity Duration Estimation, and Risk Management: Identification,	

	Analysis and Abatement of Risk	
UNIT IV	Resource Allocation: Nature of resources, Identifying Resource Requirements, Scheduling Resources, Creating Critical Path, Counting the Cost, Cost Schedules. Monitoring and Control: Visualizing progress, Cost Monitoring, Prioritizing Monitoring, Getting Project Back to Target, Change Control	8
UNIT V	Contract Management, Human Resource Management, Software Quality Definition, Software Quality Assurance, Quality Assurance Plan, Quality Matrices, ISO Standards, CMM, Six Sigma Approach	8

- 1. Software Project Management by Bob Hughes and Mike Cotterell, Third Edition, TMH.
- 2. Information Technology Project Management by Kathy Schwalbe, International Student Edition, THOMSON Course Technology, 2003.
- 3. Software Quality by Mordechai Ben-Menachem/Garry S Marliss. Thomson Learning Publication
- 4. Software Project Management A Unified Framework by Walker Royce. Pearson Education.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
со															
CO1	3	3	2	1	1	3	1	1	1	1	1	3	1	2	2
CO2	3	3	3	2	1		1	1	1	1	1			2	1
CO3	3	2	1	1	2	3	1	1	1	1	1	3	2	1	2
CO4	3	2	2	2		1		1			1	2	3		3
CO5	3	1	1	1	1	2	3	1	1	1	1	2	1	2	2
1. Low	Associa	ition	2: Ave	rage As	sociati	on	3: St	rong A	ssociat	ion					

Integral University, Lucknow Department of Computer Science & Engineering B.Tech. Computer Sc. & Engineering

Subject Name: Advance Computer Architecture, Subject Code: CS-345 w.e.f Session- 2021-22

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Registers, bus as well as memory and its hierarchy and input/output devices.
CO 2	Division based algorithms for different representation of data and discuss I/O interfaces,
	ports and Data Transfer modes
CO 3	Register and stack organization and construct different control units.
CO 4	Types of memory and memory mapping of one type with other
CO 5	Knowledge about Interconnection Network, non-blocking network, cross bar network, and shuffle
	exchange network.

UNIT I	Introduction to Computer Architecture, Evolution of Computer Architecture, Parallel Computing, Parallel Architectural Classification Schemes: Flynn's, Shores, Feng's Classification; Performance of Parallel Processors: Speedup Performance Laws, Amdahl Law, and Gustafson Law, Performance Metrics and Measures	8
UNIT II	Pipeline Processing: Introduction to Pipeline Processing, Arithmetic Pipelines, Pipelined Instruction Processing, Instruction Level Parallelism. Interlocks, Hazards, and Hazards Detentions & Resolution, Scheduling of Pipelines	8
UNIT III	Processor Architectures: Superscalar Architecture, Vector Architecture and VLIW Architecture, Super pipeline design, Memory Technology: Cache Architecture; Cache Coherence and Synchronization Mechanisms, Shared-Memory Organizations	10
UNIT IV		10

	Synchronous parallel processing, SIMD Architecture and programming principals, SIMD parallel algorithm, Data mapping and memory in Array Processor	
UNIT V	Interconnection Network, introduction to permutations, group of mapping, decomposition of a permutation into cycles, elementary permutation used in interconnection network, complete non-blocking network, cross bar network, clos network, Benes's network, shuffle exchange network	8

- 1. Peterson & Heresy, "Quantitative approach to computer Architecture",
- 2. Kai Hwang, "Advanced Computer Architecture", McGraw Hill International.
- 3. "Morgan Kaufman". Quin, "Parallel computing, Theory & Practices", McGraw Hill
- 4. Bhujde, "Parallel Computing", New Age International Hwang, "Advance Computer Architecture

РО-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
СО															
CO1	3	3	2	1	1	3	1	1	1		1	3	1	2	2
CO2	3	3	3	2	1	1	1	1	1		1	2		2	1
CO3	3	2	1	1			1	1	1		1	3		1	2
CO4	3	2	2		3	2	1	1	1		1	2	3	2	3
CO5	3	1	1	1	1	2	3	1	1	1	1	2	1	2	2
1. Low Association 2: Average Association 3: Strong Association															

Integral University, Lucknow Department of Computer Science & Engineering B.Tech. Computer Sc. & Engineering Subject Name: Green Computing, Subject Code: CS-347

w.e.f Session- 2021-22

Pre-requisite	Co-requisite	L	T	Р	С
None	None	3	1	0	4

CO 1	Obtain the fundamentals of green computing and its IT strategies						
CO 2	Learn about green assets, modeling and information systems						
CO 3	Acquire knowledge on grid framework						
CO 4	Understand the concept of green compliance						
CO 5	Work with case studies						

UNIT I	Introduction Green IT Fundamentals: Business, IT, and the Environment –Environmental Impacts of IT, Green IT, Holistic Approach to Greening IT, Greening IT, Applying IT for enhancing. Environmental sustainability, Green IT Standards and Eco-Labelling of IT, Enterprise Green, IT strategy, Green IT: Burden or Opportunity?	8
UNIT II	Green Devices and Hardware with Green Software Green Devices Hardware/Software: Introduction, Life Cycle of a device or hardware, Reuse, Recycle and Dispose, Energy-saving software techniques, Evaluating and measuring software Impact to platform power	9
UNIT III	Green Assets and Modeling and Grid Framework	9

	Green Assets: Buildings, Data Centers, Networks, and Devices – Green Business Process Management: Modeling, Optimization, and Collaboration –Green Information Systems: Design and Development Models. Virtualization of IT systems – Role of electric utilities, Telecommuting, teleconferencing and teleporting – Materials recycling – Best ways for Green PC – Green Data center – Green Grid framework	
UNIT IV	Green Compliance and Social Aspects Socio-cultural aspects of Green IT – Green Enterprise Transformation Roadmap – Green Compliance: Protocols, Standards, and Audits – Emergent Carbon Issues: Technologies and Future. Introduction, Strategizing Green Initiatives, Implementation of Green IT, Information Assurance, Communication and Social media	9
UNIT V	Regulating the Green IT and CASE STUDIES Introduction, The regulatory environment and IT manufacturers, Non regulatory government initiatives, Industry associations and standards bodies, Green building standards, Green data centers, Social movements and Greenpeace. Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector.	9

- 1. BhuvanUnhelkar, —Green IT Strategies and Applications-Using Environmental Intelligencel, CRC Press, June 2014.
- 2. Woody Leonhard, Katherine Murray, —Green Home computing for dummies |, August 2012.
- 3. Harnessing Green IT Principles and Practices , San Murugesan, G.R. Gangadharan, Wiley Publication, ISBN:9788126539680

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
СО															
CO1	3	3	2	3	3					2	1	2	2	3	1
CO2	3	3	1	2	1			1	1	2	2	1			3
CO3	3	3	3	1	1	1				2	2	2	2	2	3
CO4	2	2	1	2	1	2	2	3	2	2			1	2	1
CO5	3	1	1	2	1	2	1	3	1	2	1	2	1	2	2
1. Low A	1. Low Association 2: Average Association 3: Strong Association														

Integral University, Lucknow Department of Computer Science & Engineering B.Tech. Computer Sc. & Engineering Subject Name: Human Computer Interaction, Subject Code: CS-348 w.e.f Session- 2021-22

Course	Description
Outcome	
(CO)	
CO1	Acquire fundamental concepts of computer components functions regarding interaction with human and vice versa
CO2	Analyze interface problems to recognize what design approach and interaction styles are
	required in the light of usability standards and guidelines.
CO3	Utilize basic concepts to construct a user-interaction strategy for a given problem its
	usability evaluation and to meet desired needs within realistic constraints such as social,
	political and ethical norms.
CO4	Ability to design and develop an interface by using appropriate HCI techniques that are
	preferred by the user.
CO5	Ability to apply different evaluation technique with case studies.

Unit 1: Introduction to user-centric design – case studies, historical evolution, issues and challenges and current trend, Engineering user-centric systems – relation with software engineering, iterative life-cycle, prototyping, guidelines, case studies.

Unit 2: User-centric computing – framework, introduction to models, model taxonomy, Computational user models (classical) – GOMS, KLM, Fitts' law, Hick-Hymans law.

Unit 3: Computational user models (contemporary) 2D and 3D pointing, constrained navigation, mobile typing, touch interaction, Formal models – case study with matrix algebra, specification and verification of properties, formal dialog modeling.

Unit 4: Empirical research – research question formulation, experiment design, data analysis, statistical significance test. Case Study 1- Multi-Key press Hindi Text Input Method on a Mobile Phone.

Unit 5: User-centric design evaluation – overview of evaluation techniques, expert evaluation, user evaluation, model-based evaluation with case studies. Case Study 2 – GUI design for a mobile phone based Matrimonial application.

References:

- 1. Samit Bhattacharya (July, 2019). Human-Computer Interaction: User-Centric Computing for Design, McGraw-Hill India, Print Edition: ISBN-13: 978-93-5316-804-9; ISBN-10: 93-5316-804-X, E-book Edition: ISBN-13: 978-93-5316-805-6; ISBN-10: 93-5316-805-8.
- 2. Dix A., Finlay J., Abowd G. D. and Beale R. Human Computer Interaction, 3rd edition, Pearson Education, 2005.
- 3. Preece J., Rogers Y., Sharp H., Baniyon D., Holland S. and Carey T. Human Computer Interaction, Addison-Wesley, 1994.
- 4. B. Shneiderman; Designing the User Interface, Addison Wesley 2000 (Indian Reprint).

CO-PO/PSO MAPPING

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
СО															
CO1	3	3	2	1	1	3	1	1	1	1	1	3	1	2	2
CO2	3	3	3	2	1	1	1	1	1	1	1	2	3	2	1
CO3	3	2	1	1			1			1	1	3		1	2
CO4	3	2	2		1	2	1	1	1					2	3
CO5	3	1	1	1	1	2	3	1	1	1	1	2	1	2	2
1. Low A	L. Low Association 2: Average Association 3: Strong Association														

COURSE: COMPILER DESIGN LAB

COURSE CODE: CS316

COURSE CREDIT: 1

COURSE OBJECTIVES:

- 1. Write a program to implement TOKENIZER.
- 2. Write a program using call statement and CASE statement.
- 3. Write a program to find out FIRST / FOLLOW of grammar.
- 4. Evaluate POSTFIX and PREFIX expression with the help of stack.
- 5. Write a program to implement OPERATOR PRECEDENCE PARSER.
- 6. Design a parser like RECURSIVE DESCENT PARSER.
- 7. Design PREDICTIVE PARSER.
- 8. Design I.R(0) PARSER..

COURSE OUTCOMES (CO):

After completion of the course, a student will be

CO 1	Able to understand the basic concepts TOKEN and lexeme, the flow of control
CO 2	Able to design and develop various programming concepts, like case statements, and procedure calls.
CO 3	Able to analyze and compute first and follow, and used the concept first and follow, to implement various parsing algorithms.
CO 4	Able to develop programs on the different parser.
CO 5	Able to implement programs on various SDT.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	2	2	1		2		2						2	2	1
CO2	3	1	2	2	2		3						1	2	1
CO3	4	2	2	2			2						3	2	2
CO4	3	2	3	3			3						3	1	1
CO5	1	2	1				3						2	1	1
1. Low <i>A</i>	1. Low Association 2: Average Association 3: Strong Association														

COURSE: Microprocessor Lab

COURSE CODE: CS314

COURSE CREDIT: 1

COURSE OBJECTIVES:

\

- To expose students to the operation of typical microprocessor (8086) trainer kit.
- To prepare the students to be able to solve different problems by developing different programs.
- To develop the quality of assessing and analysing the obtained data.

COURSE OUTCOMES (CO):

After completion of the course, a student will be

CO 1	Identify relevant information to supplement to the Microprocessor and
	Microcontroller course6.
CO 2	Set up programming strategies and select proper mnemonics and run their program on the training boards.
CO 3	Practice different types of programming keeping in mind technical issues and evaluate possible causes of discrepancy in practical experimental observations in comparison
CO 4	Develop testing and experimental procedures on Microprocessor and Microcontroller analyse their operation under different cases.
CO 5	Prepare professional quality textual and computational results, incorporating accepted data analysis and synthesis methods, simulation software, and word-processing tools.

Programs
Write a program to two add 16 bit Hexadecimal numberswithout carry.
Write a program to two add 16 bit Hexadecimal numbers withcarry.
Write a program to find the greatest number from an arrayof 10 numbers.
Write a program to calculatethe factorial of a number.
Write a program to multiply two 16-bit numbers resultshould be greater than 16 bit.
Write a program to input 5 numbers and arrange them indescending order.
Write a program to convert the string data it's Two'scomplement form.
Write a program to multiplytwo 8-bit signed - numbers.
Write a program to read 8 bit data from Port B. Complement this data & send it back to Port A.
Write a program to move ablock of data from one memory location to another.

PO-	PO1	PO2	PO3	PO4	PO5	P	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO						O 6									
CO	7														
CO1	2	3	2	2	-	1	-	-	2	2	2	2	2	1	1
CO2	3	3	1	2	2	1	1	1	2	2	2	2	2	1	1
CO3	1	2	3	2	-	3	-	2	2	3	1	-	2	1	1
CO4	2	3	-	2	2	1	-	1	2	2	-	2	2	1	1
CO5	1	2	1	2	3	-	2	-	2	2	1	2	2	1	1
1. Low	1. Low Association 2: Average Association						3: Strong Association								

COURSE: COMPUTER NETWORKS LAB

COURSE CODE: CS306

COURSE CREDIT: 1

COURSE OBJECTIVES:

Resource sharing is the main objective of the computer network Lab. The objective of this lab course is to get practical knowledge of working principles of various communication protocols. Analyse structure and formats of TCP/IP layer protocols using network tools such as and network simulators (NS2). This lab provides a practical approach to Ethernet/Internet networking.

COURSE OUTCOMES (CO):

After completion of the course, a student will be

CO 1	Understand the practical approach to network communication protocols.
CO 2	Understand network layers, structure/format and role of each network layer.
CO 3	Able to design and implement various network application such as data transmission between client
	and server, file transfer, real-time multimedia transmission.
CO 4	Understand the various Routing Protocols/Algorithms and Internetworking.
CO 5	Understand the structure and organization of computer networks; including the division into
	network layers, role of each layer, and relationships between the layers.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO]														
CO1	2	1	2		3		3						2	1	3
CO2	1	1	1	2	1		1						1	3	1
CO3	3	2	2	2			3						3	1	2
CO4	2	1	3	1			2						1	2	1
CO5	1	2	1				3						2	1	2
1. Low A	1. Low Association 2: Average Association			1	3: Strong Association										

Integral University, Lucknow Department of Computer Science & Engineering B.TECH.

Subject Name: Artificial Intelligence, Subject Code: CS-422 w.e.f Session 2022-23

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Design an intelligent agent to solve real world problems.
CO 2	Identify the best heuristic for problem solving that will lead to find the optimal solution within constraints and adverse conditions.
CO 3	Represent knowledge using logic programming, create knowledge base and apply inference mechanisms.
CO 4	Apply statistical and probabilistic machine learning techniques for a real world problem in order to solve it.
CO 5	Design and develop an expert system, solve problems using evolutionary programming, using swarm intelligence and develop programs using PROLOG

Objective:

- 1. Explain the basic problem solving techniques, knowledge representation methods and learning methods of Artificial Intelligence.
- 2. Assess the applicability, strengths, and weaknesses of the basic knowledge representation, problem solving, and learning methods in solving particular engineering problems.
- **3.** Understand the role of knowledge representation, problem solving, and learning in intelligent system engineering.
- **4.** Develop intelligent systems by assembling solutions to concrete computational problems.
- 5. Develop an interest in the field sufficient to take more advanced subjects.

UNIT I	INTRODUCTION	8
	Introduction to AI, Current Trends in AI, Intelligent Agents:- Agents and	
	Environments, Nature of Environments, Structure of Agents, Problem Solving,	
	Problem Solving Agents, Example Problems, Searching for Solutions, Uniformed	
	Search Strategies (BFS, DFS, DLS, IDS)	
UNIT II	SEARCHING TECHNIQUES	8
	Informed (Heuristic) Search Strategies: - Heuristic Function, Greedy best first	
	search, A* search, Local Search Algorithms and Optimization Problems (Hill	
	Climbing & Genetic Algorithm), Introduction to Constraint Satisfaction Problems	
	(CSP), Adversarial Search:- Optimal Decisions in Games (MiniMax algorithm),	
	Alpha – Beta Pruning.	
UNIT III	KNOWLEDGE AND REASONING	8
	Introduction to logical Agents, Propositional Logic:- Representation, Syntax and	
	Semantics, Forward Chaining, Backward Chaining, CNF, Resolution, First Order	
	Logic:- Representation, Syntax and Semantics, Inference in First Order Logic:-	
	Unification, Forward Chaining, Backward Chaining, Resolution.	
UNIT IV	LEARNING	8

	Forms of Learning, Inductive Learning:- Learning Decision Trees, Statistical learning methods:- Naïve bayes models, Bayesian network, EM algorithm, HMM, Instance based learning:-nearest neighbor models	
UNIT V	INTELLIGENT SYSTEMS	8
	Expert System- Stages in the Development of an Expert System, Difficulties in	
	Developing Expert System, Application of Expert System, Introduction to	
	Evolutionary Programming, Swarm Intelligent Systems, Introduction to PROLOG.	

- 1. Stuart Russell, Peter Norvig, "Artificial Intelligence A Modern Approach", 2nd Edition, PearsonEducation / Prentice Hall of India, 2004.\
- 2. George F. Luger, "Artificial Intelligence-Structures and Strategies for Complex Problem Solving", Pearson Education / PHI, 2002.
- 3. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Harcourt Asia Pvt. Ltd., 2000.
- 4. N.P. Padhy, "Artificial Intelligence and Intelligence systems", Oxford Press.

CO-PO/PSO MAPPING

PO - PS O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO	1															
CO 1	2	3	3	1		2						1	2	3		
CO 2	3	3	3	2		2						3			2	1
CO 3	3	2	3	2	3							3	1	2		
CO 4	3	2	2	2	3	3						2		2	2	2
CO 5	3	3	3	3	3	2	1	1	1			2		3		1
		1. Lo	w As	sociat	tion	2: A	vera	socia	tion	3:	: Stror	ıg Ass	ociatio	n		

Integral University, Lucknow Department of Computer Science & Engineering B.TECH. COMPUTER SCIENCE

Subject Name: Distributed Systems, Subject Code: CS-410 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Understand the software and hardware concepts of distributed systems
CO 2	Evaluate and analyze the issues and implementations of deadlock detection and the agreement problems.
CO 3	Analyze the RMI, RPC and security issues, replication and fault tolerance in the distributed systems.
CO 4	Compare and analyze the flat and nested transactions, applications and analysis of locks in view of distributed systems, File systems and recent advances.
CO 5	Implement and analyze distributed multimedia, CORBA RMI, Java RMI, CORBA services.

COURSE OBJECTIVES:

- The aim of this course is to introduce the student to the areas of cryptography and cryptanalysis.
- This course develops a basic understanding of the algorithms used to protect users online and to understand some of the design choices behind these algorithms.
- Aim is to develop a workable knowledge of the mathematics used in cryptology in this course.
- Reveal different types of cipher generation method to solve engineering and other problems.
- Understand the theory and applications of cryptography and network security.

UNIT I	CHARACTERIZATION OF DISTRIBUTED SYSTEMS:	8								
	Introduction: Examples of Distributed Systems, Resource Sharing and the Web									
	Challenges. System Models Architectural Models, Fundamental Models,									
	Theoretical Foundation for Distributed System: Limitation of Distributed System,									
	Absence of Global Clock, Shared Memory, Logical Clocks, Lamports& Vectors									
	Logical Clocks, Causal Ordering of Messages, Global State, Termination									
	Detection. Distributed Mutual Exclusion: Classification of Distributed Mutual									
	Exclusion, Requirement of Mutual Exclusion Theorem, Token Based and Non-									
	Token Based Algorithms, Performance Metric for Distributed Mutual Exclusion									
	Algorithms.									
UNIT II	DISTRIBUTED DEADLOCK DETECTION:	8								
	System Model, Resource vs Communication Deadlocks, Deadlock Prevention,									
	Avoidance, Detection & Resolution, Centralized Dead Lock Detection, Distributed									
	Dead Lock Detection, Path Pushing Algorithms, Edge Chasing Algorithms.									
	Agreement Protocols: Introduction, System Models, Classification of Agreement									
	Problem, Byzantine Agreement Problem, Consensus Problem, Interactive									

	Case Study: CORBA RMI, CORBA Services, Java RMI.						
	Distributed Multimedia Systems: Introduction, Characteristics of Multimedia data, Quality of service management, Resource management, Stream Adaption.						
	Migration Algorithm, Read Replication Algorithm, Full Replication Algorithm.						
	Architecture, Algorithms for implementing DSM, Client- Server Algorithm,						
UNIT V	DISTRIBUTED SHARED MEMORY(DSM):	8					
	Advances.						
	Architecture, Sun Network File System, The Andrew File System, Recent						
	Deadlocks, Transaction Recovery, Distributed File Systems: File Service						
	Commit Protocols, Concurrency Control in Distributed Transactions, Atomic						
	Distributed Transactions: Flat and Nested Distributed Transactions, Atomic						
	Transactions, Nested Transactions, Locks, Optimistic Concurrency Control, Timestamp Ordering, Comparison of Methods for Concurrency Control.						
UNIT IV	TRANSACTIONS AND CONCURRENCY CONTROL:	8					
TINITE IX	Services, Highly Available Services, Transactions with Replicated Data.	0					
	Millicent, Replication: System Model and Group Communication, Fault – Tolerant						
	Algorithms, Cryptography Pragmatics, Needham Schroeder, Kerberos, SSL &						
	Notifications, Security: - Overview of Security Techniques, Cryptographic						
	Communication Between Distributed Objects, Remote Procedure Call, Events and						
UNIT III	DISTRIBUTED OBJECTS AND REMOTE INVOCATION:						
	Agreement Problem, Atomic Commit in Distributed Database System.						
	Consistency Problem, Solution to Byzantine Agreement Problem, Application of						

- 1. Couloris, Dollimore, Kindberg," Distributed systems: Concepts and Design". PearsonEducation Asia, 3ed.
- 2. Singhal and Shivratri," Advanced Concepts in Operating Systems", Mc Graw Hill.

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO CO															
CO															
CO1	3	3	2	1	1	3	1	1	1	1	1	3	2	1	1
CO2	3	3	3	2	1	1	1	1	1	1	1	2	3	2	1
CO3	3	2	1	1	2	3	2	2	3	1	1	3	1	2	2
CO4	3	2	2	2	3	3	1	1	1	1	1	2	2	3	2
CO5	3	1	1	1	1	2	1	1	1	1	1	2	2	2	1
1. Low Association 2: Average Association 3: Strong Association															

Integral University, Lucknow
Department of Computer Science & Engineering
B.TECH. COMPUTER SCIENCE

Subject Name: Cryptography and Network Security, Subject Code: CS-412

w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Compare and analyze various Cryptographic Techniques
CO 2	Understanding various Symmetric Key Distribution techniques
CO 3	Apply, analyze and compare various public key cryptography techniques
CO 4	Implement Digital Signature techniques
CO 5	Understand the various Security Applications

COURSE OBJECTIVES:

UNIT I	Introduction to OSI Security Architecture:	8								
	Security Attacks, Services and Mechanisms, Introduction to Cryptology.									
	Conventional Encryption: Conventional Encryption Model, Classical Encryption									
	Techniques - Substitution Ciphers: Caesar Cipher, Monoalphabetic Cipher,									
	Playfair Cipher, Hill Cipher, Polyalphabetic Cipher, One-Time Pad; Transpositions									
	Ciphers: Rail Fence Technique; Rotor Machines, Cryptanalysis, Steganography.									
	Modern Block Ciphers- Block Ciphers Principles: Stream & Block Ciphers, Fiestal									
	Cipher, Shannon's Theory of Confusion and Diffusion, S-DES, Data Encryption									
	Standards (DES): DES Encryption and Decryption, Strength of DES.									
UNIT II	Block Cipher Modes of Operation:	8								
	ECB, CBC, CFB, OFB, CTR, Triple DES: Double DES, TDES with Two Keys,									
	TDES with Three Keys.									
	Symmetric Key Distribution using KDC, Random Number Generation: Use of									
	Random Numbers, Pseudo Random Number Generators, Cryptographically									
	Generated Random Numbers, Blum BlumShub Generator.									
	Introduction to Graph, Ring and Field, Prime and Relative Prime Numbers,									
	Modular Arithmetic, Fermat's & Euler's Theorem, Primality Testing, Euclid's									
	Algorithm.									
UNIT III	Principles of Public Key Cryptosystems:	8								
	Introduction, Application & Requirement; RSA Algorithm: Computational									
	Aspects, Security of RSA; Diffie-Heilman Key Exchange Algorithm, Introductory									
	Idea of Elliptic Curve Cryptography.									
	Message Authentication & Hash Functions: Authentication Requirements,									
	Authentication Functions, Message Authentication Codes (MAC), Hash Functions:									
	Requirement for a Hash Function, Simple Hash Functions, Security of Hash									
	Function & MAC, MD5 Message Digest Algorithm, Secure Hash Algorithm									
	(SHA-1).									
UNIT IV	Digital Signatures:	8								

	Requirements, Direct & Arbitrated Digital Signature, Protocols: Mutual & One way Authentication; Digital Signature Standard (DSS): DSS Approach, Digital Signature Algorithm. Authentication Applications: Kerberos Version 4 & Difference between Kerberos v4 & v5, Kerberos Realms; X.509 Authentication Service: Authentication Procedures, Directory Authentication Service; Electronic Mail Security — Pretty Good Privacy (PGP): Operational Description, Cryptographic Keys, Key Rings, Public Key Management.	
UNIT V	IP Security:	8
	Architecture, Authentication Header, Encapsulating Security Payloads, Combining Security Associations, Key Management; Web Security: Secure Socket Layer & Transport Layer Security, Secure Electronic Transaction (SET). System Security: Intruders, Viruses and Related Threats: Malicious Programs, The Nature of Viruses, Types of Viruses, Macro Viruses, Email Viruses; Firewall: Firewall Design Principles, Trusted Systems.	o de la companya de

- 1. William Stallings, "Cryptography and Network Security: Principles and Practice" Prentice Hall, New Jersey.
- 2. Johannes. A. Buchmann, "Introduction to cryptography", Springer Verlag. Bruce Schiener, "Applied Cryptography".

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO															
CO1	3	3	2	2	2								3	2	2
CO2	2	2	2	2	2								2	2	1
CO3	3	2	2	1	2								3	2	1
CO4	3	2	2	2	1	2	1						3	2	1
CO5	3	2	3	2	2	1	1	1					3	2	2
1. Low Association 2: Average Association								3	3: Stroi	ıg Asso	ciation]			

Integral University, Lucknow Department of Computer Science & Engineering B.TECH. COMPUTER SCIENCE

Subject Name: Mobile Computing, Subject Code: CS-417 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

COURSE OUTCOME (CO)	DESCRIPTION	Bloom's Taxonomy Level
CO 1	To understand and compare the various wireless communication technologies.	Knowledge (level1)
CO 2	To visualize the various important steps in GSM communication.	Understand (level2)
CO 3	To specify and identify the requirement the mobile IP and Transport Protocol.	Understand (level2)
CO 4	To examine and simulate the important aspects of Mobile Adhoc Networks.	Analyze(level4) Evaluate (level5)
CO 5	To apply the knowledge gained to design and develop a mobile application.	Apply(level3) Evaluate (level5)

COURSE OBJECTIVES:

- to give the knowledge of TCP/IP protocol.
- to give the knowledge of packet switching and message switching.
- to give the knowledge of sliding window protocol.
- to give the knowledge of the CDMA.
- to give the knowledge of network layer protocols viz. IPv4, ARP, RARP.
- to give the knowledge of routing.
- to give the knowledge of TCP & UDP.
- to give the knowledge of congestion control.
- to give the knowledge of quality of service.
- to give the knowledge of DNS, FTP, TELNET and remote logging.

UNIT I	Introduction to Wireless Communication:	8
	Application, Frequencies for radio transmission, Signals, Antennas, Signal	
	propagation, Multiplexing: Space division multiplexing, Frequency division	
	multiplexing, Time division multiplexing, Code division multiplexing,	
	Modulation: Amplitude shift keying, Frequency shift keying, Phase shift keying,	
	Advanced frequency shift keying, Advanced phase shift keying, spread spectrum:	
	Direct sequence spread spectrum, Frequency hopping spread spectrum, Cellular	

	systems.	
UNIT II	Channel Allocation:	8
	Motivation for a specialized MAC, Hidden and exposed terminals, Near and far terminals, SDMA, FDMA, TDMA, Fixed TDM, Classical Aloha, Slotted Aloha, Carrier sense multiple access, Carrier sense multiple access with collision	
UNIT III	detection, Multiple access with collision avoidance. Telecommunications Systems:	8
	GSM: Mobile services, System architecture, Radio interface, Protocols, Localization and calling, Handover, Security; Satellite systems: History, Applications, Basics of GEO, LEO and MEO, Routing, Localization, Handover, Examples; GPRS.	Ü
UNIT IV	Wireless LAN: Infra-red vs radio transmission, Infrastructure and ad-hoc network, IEEE 802.11: System architecture, Protocol architecture, Physical layer, medium access control layer, MAC management, 802.11b, 802.11a, Bluetooth: User scenarios, Architecture, Radio layer, Baseband layer. Introduction to WAP architecture and Protocol stack.	8
UNIT V	Mobile network layer:	8
	Mobile IP: Goals, assumptions and requirements, Entities and terminology, IP packet delivery, Agent discovery, Registration, Tunneling and encapsulation, Optimizations, Reverse tunneling, IPv6, Dynamic host configuration protocol.	

- 1. Jochen Schiller, "Mobile Communications, Pearson Education, 2nd Edition, 2003.
- 2. Dharma Prakash Agrawal & Qing-An Zeng "Introduction to Wireless & Mobile Systems", Thomson Brooks/Cole, 2nd Edition 2003.
- 3. Krzysztof Wesolowski, "Mobile Communication Systems", John Wiley & Sons, Ltd.
- 4. Ron Olexa, "Implementing 802.11, 802.16 and 802.20 Wireless Networks, Elsevier

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PSO															
CO	1														
CO1	3	3	2	1	1	3						3	1	1	
CO2	3	3	3	2	1	1						2			3
CO3	3	2	1	1	2	2	3					3	2		3
CO4	3	2	2	2	3	3						2		4	
CO5	3	1	1	1	1	2	1					2	1		4
		1. Lov	w Asso	ociatio	n 2	2: Ave	rage A	Associa	ation	3	3: Stror	ıg Asso	ciation	ļ	

Integral University, Lucknow Department of Computer Science & Engineering B.TECH. COMPUTER SCIENCE

Subject Name: Fuzzy Logic & Neural Networks, Subject Code: CS-415 w.e.f Session 2020-21

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Learn about soft computing techniques and their applications.
CO 2	Analyze various neural network architectures.
CO 3	Enable students to understand different Clustering Algorithms.
CO 4	Define the fuzzy systems.
CO 5	Identify and select a suitable Soft Computing technology to solve the problem; construct a solution
	and implement a Soft Computing solution.

COURSE OBJECTIVES:

The objectives of this course are:

- 1. To introduce the concepts in Soft Computing such as Artificial Neural Networks, Fuzzy logic-based systems, genetic algorithm-based systems and their hybrids.
- 2. Develop the skills to gain a basic understanding of neural network theory and fuzzy logic theory.
- 3. Reveal different applications of these models to solve engineering and other problems.
- 4. Understand the theory and applications of artificial neural network and fuzzy systems to engineering applications with emphasis on image processing and control.
- 5. Discuss neural networks and fuzzy systems, architectures, algorithms and applications, including Backpropagation, Competitive Learning, Fuzzy inference methods and expert systems etc.

UNIT I	Introduction:	8
	History of Neural Networks, Structure and Function of a Single Neuron,	
	Architectures and Their Applications, Supervised Learning: Single Layer	
	Networks: Perceptron's, Linear Separability, Perceptron Training Algorithms and	
	Their Modifications: Pocket Algorithm and Adaline. Supervised Learning:	
	Multiplayer Networks: Multilevel Discrimination, Preliminaries, and	

	Backpropagation Algorithm, Setting the Parameters Values, Accelerating the Learning Process.	
UNIT II	Adaptive Multilayers Networks:	8
	Network Pruning Algorithms, Marchand Algorithm, Upstart Algorithm, Cascade	
	Correlation. Prediction Networks: Feed Forward Networks for Forecasting,	
	Recurrent Networks (Partially, Fully), Radial Basis Functions and Probabilistic	
	Neural Networks.	
UNIT III	Unsupervised Learning:	8
	Winner-Take-All Networks: Hamming Networks, Maxnet. Learning Vector	
	Quantization, Counter Propagation Networks (Forward Only Counter Propagation	
	networks), Adaptive Resonance Theory (ART1), K-Means Clustering Algorithms,	
	Kohonens Self Organization Maps, Principal Component Analysis.	
UNIT IV	Fuzzy Logic:	8
	Fuzzy Sets, Properties, Operation on Fuzzy Sets, Fuzzy Relations, Operation on	
	Fuzzy Relations, Fuzzy IF-THEN Rules, Variable Inference Techniques,	
	Fuzzification and Defuzzification Methods, Fuzzy System Design.	
UNIT V	Associative Models:	8
	Auto-Association, Hetro-Association, Hopefield Networks, Brain State-In-ABox	
	Networks, and Boltzman Machines. Optimization Methods: Optimization Using	
	Hopefield Networks, Introduction to Simulated Annealing and Ant Colony	
	Optimization and Evolutionary Computation, Introduction to Hybrid Systems,	
	Introduction to Deep Learning.	

- 1. Kishan Mehrotra, Chilukuri K. Mohan, Sanjay Ranka, Elements of Artificial Neural Networks, MIT Press/Penram International.
- 2. Simon Haykin, Neural Network a comprehensive Foundation, Macmillan College, proc, Con, Inc.
- 3. Ross T.J., Fuzzy Logic with Engineering Applications, McGraw-Hill.
- 4. Zurada J.M., Introduction to Artificial Neural Systems, Jaico Publishers.
- 5. Riza C. Berkiu and Trubatch, Fuzzy system Design Principles, Building Fuzzy IF-THEN Rule Bases, IEEE Press.
- 6. Goldberg D.E., Genetic Algorithms in Search Optimization and Machine Learning, Addison Wesley. 7. Dorigo and Thomas Stützle, Ant Colony Optimization, MIT Press.
- 8. Intelligent Hybrid Systems, SuranGoonatilake and Sukhdev Khebbal (Eds.), Intelligent Hybrid Systems, John Wiley.

PO- PS O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO															
CO 1	3	3	3	1	1	3						2	1	1	
CO 2	3	2	3	2	1	1						1			3
CO 3	3	2	1	2		2	3					3	2		2
CO 4	3	2	2	2	3	3						2		3	
CO 5	3	1	1	1	1	2	1					2	1		3
		1. Lov	v Asso	ciatio	on Z	2: Ave	rage	Assoc	iation		3: Str	ong As	sociati	on	

Integral University, Lucknow Department of Computer Science & Engineering B.TECH.

Subject Name: Data Warehouse and Data Mining, Subject Code: CS-418 w.e.f Session 2018-19

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	Develop a strong foundation of knowledge about data warehouse and related techniques.
CO 2	Design and build a data warehouse from the available historical data and perform OLAP operations to discover knowledge.
CO 3	Preprocess the data using cleaning, integration, transformation and reduction and find associations and correlations among that data.
CO 4	Classify the given dataset by using statistical and probabilistic models to predict the class labels of new data.
CO 5	Perform cluster analysis by using some major clustering methods and work on the recent advancements on text and web mining.

Objective:

- 1. Understand the concepts of Data Warehouse and its building blocks.
- 2. Study the architecture of Data Warehouse and the essential processes in building a data warehouse.
- 3. Study of data mining functionalities, related technologies and its techniques.
- 4. Study of various classification and prediction algorithms.
- 5. Study of major clustering techniques and current trends in data mining.

UNIT I	Overview & Concepts							
	The Compelling Need for Data Warehousing: Introduction to Data							
	Warehousing, Failures of Past Decision Support System, Data Warehouse Building							
	Blocks: -Nature of data in datawarehouse, OLAP in the Data Warehouse: Major							
	Features and Functions, OLAP Models, Comparisonbetween operational Data							
	Base Systems & Data warehouse.							
UNIT II	Data Warehouses and Data Marts							
	Overview of Components, Meta data & its types, MultidimensionalData Model: -							
	Data cubes, Schemas for multidimensional databases, concept hierarchies,							
	OLAPoperations in multidimensional data models, Data Warehouse Architecture: -							
	3-tier architecture, DataExtraction, Transformation, and Loading, Data Quality:							
	Why is data Quality Critical? Data QualityChallenges.							
UNIT III	Data Mining	8						

	Introduction, Data Mining Functionalities, Classification of Data Mining System; MajorIssues in Data Mining, Data Preprocessing: Preprocess, Descriptive Data Summarization, Data Cleaning, Data Integration & Transformation, Data Reduction, Mining Frequent Patterns, Association, and Correlations, Basic Concept, Efficient & Scalable Frequent Item set Mining Methods, Mining Various Kinds of Association Rules.	
UNIT IV	Classification & Prediction Issues, Classification by Decision Tree Induction, Bayesian Classification, Classification by Back Propagation, Associative Classification, nearest neighbor classification, Prediction.	8
UNIT V	Cluster Analysis What is Cluster Analysis, Types, Categorization of Major Clustering Methods, Partitioning Methods, Hierarchical Methods- cure and chameleon, Density-Based Methods: DBSCAN &OPTICS, Wave Cluster, CLIQUE. Current trends: Text mining, web mining.	8

- 1. "Data Warehousing Fundamental" by PaulrajPonniah, John Wiley & Sons INC.
- 2. Data Mining Concepts & Techniques by Jiawei Han & Michline Kamber.
- 3. Mallach,"Data Warehousing System",McGraw Hill
- 4. M.H.Dunham, "Data Mining:Introductory and Advanced Topics" Pearson Education

CO-PO/PSO MAPPING

PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PS
PSO CO																O4
CO1	3	2			2	1					2		2			
CO2		2		1			2							1		
CO3	2		1			1		1				1	1			3
CO4	2			2												
CO5	3		2			1				1				2		
	1. Low Association				2: A	2: Average Association			3: Strong Association				1			

Integral University, Lucknow Department of Computer Science & Engineering B.TECH.

Subject Name: Pattern Recognition , Subject Code: CS-419 w.e.f Session 2022-23

Pre-requisite	Co-requisite	L	T	P	C
None	None	3	1	0	4

CO 1	The students learn the basic concepts and methods for the recognition of
	patterns in data
CO 2	The student achieve working knowledge of pattern recognition application development process
CO 3	Understanding and application of both supervised and unsupervised classification methods to detect and characterize patterns in real-world data
CO 4	Application of different algorithmic approaches for the detection and characterization of patterns in multi-dimensional data
CO 5	Introducing the curse of dimensionality and various methods of dimensions reduction

Objective:

- 1. To introduce the students to the basic concepts and methods for the recognition of patterns in data
- 2. To provide the student with a working knowledge of pattern recognition application development process
- 3. Understand and apply both supervised and unsupervised classification methods to detect and characterize patterns in real-world data
- 4. Apply different algorithmic approaches for the detection and characterization of patterns in multi-dimensional data
- 5. To introduce the curse of dimensionality and various methods of dimensions reduction

UNIT I	INTRODUCTION	8			
	Basics of pattern recognition, Design principles of pattern recognition system,				
	Learning and adaptation, Pattern recognition approaches, Mathematical				
	foundations - Linear algebra, Probability Theory, Expectation, mean and				
	covariance, Normal distribution, multivariate normal densities, Chi squared test.				
UNIT II	Statistical Patten Recognition				
	Statistical Patten Recognition: Bayesian Decision Theory, Classifiers, Normal				
	density and discriminant functions.				
UNIT III	Parameter estimation methods	8			
	Parameter estimation methods: Maximum-Likelihood estimation, Bayesian				
	Parameter estimation, Dimension reduction methods - Principal Component				
	Analysis (PCA), Fisher Linear discriminant analysis, Expectation-maximization				
	(EM), Hidden Markov Models (HMM), Gaussian mixture models.				

UNIT IV	Nonparametric Techniques					
	Nonparametric Techniques: Density Estimation, Parzen Windows, K-Nearest Neighbour Estimation, Nearest Neighbour Rule, Fuzzy classification.					
UNIT V	Unsupervised Learning & Clustering					
	Unsupervised Learning & Clustering: Criterion functions for clustering, Clustering					
	Techniques: Iterative square - error partition clustering – K-means, agglomerative					
	hierarchical clustering, Cluster validation					

- 1. Richard O. Duda, Peter E. Hart and David G. Stork, "Pattern Classification", 2nd Edition, John Wiley, 2006.
- 2. C. M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2009.
- 3. S. Theodoridis and K. Koutroumbas, "Pattern Recognition", 4th Edition, Academic Press, 2009.

Integral University, Lucknow Department of Computer Science & Engineering Subject Name: SciLab

Subject Name: Serzais
Subject Code: CS-424
w.e.f Session 2020-21
Credit:1

Syllabus

- 1. **Installing**, Expressions: Show mathematical expressions with numbers Variables, Diary command, Define symbolic constants. Basic functions, suppressing output(;),help,clc
- **2. Vector Operations**, Define vector, Calculate length of a vector.

Perform mathematical operations on Vectors such as addition, subtraction and multiplication.

- Define a matrix, Calculate size of a matrix, Perform mathematical operations on Matrices such as addition, subtraction and multiplication.
- **3. Matrix Operations,** Access the elements of Matrix, Determine the determinant, inverse and eigen values of a matrix, Define special matrices, Perform elementary row operations, Solve the system of linear equations.
- **4. Conditional Branching,** 'if' and 'then' with the example, use of the 'else' keyword use of the 'elseif' keyword, example for select
- **5. Iteration,** Explain syntax of 'for' statement- tell that the variable iterates over a list/vector/matrix.
- 6. Scripts and Functions, Introduction to the file formats in Scilab.

7. Plotting 2D graphs, Aboutlinspace: linspace is a linearly spaced vector.

Plot a simple graph: x=linspace(12,34,10), y=linspace(-.1,2,10), plot(x,y) plot2d

Use of "clf()".

Configure the title for the plot

Configure a legend

Divide a graphic window into a matrix of sub-windows using subplot(mnp)

8. Xcos introduction

What is XCOS.

What is palette.

To collect the blocks from the palette and connect them to construct the block diagram.

Set the parameters of different blocks.

To setup the simulation parameters.

Simulate the constructed block diagram.

Integral University, Lucknow
Department of Computer Science & Engineering
Subject Name: AI Lab Subject Code: CS-423
w.e.f Session 2020-21
Credit:1

List of Experiments

- 1 To understand & solve Tower of Hanoi problem
- 2 To understand Uninformed search techniques (BFS)
- 3 To understand Uninformed search techniques (DFS)
- 4 To understand Uninformed search techniques (IDS)
- 5 To understand Uninformed search techniques (DLS)

- 6 To understand Informed search techniques (A*)
- 7 To understand artificial neural networks & their basic working principle Learning Through perception
- 8 To understand Optimizing Informed search techniques
- 9 To understand the Machine learning concept & implementation of Example based learning